Stat 401, section 8.1 Hypotheses and Test Procedures

notes by Tim Pilachowski

The process of chapter 8 will parallel that of chapter 7, but focus on hypothesis tests rather than confidence intervals: definition, theory and underlying concepts (9th and 8th 8.1), large-sample situations (9th 8.2, 8th 8.2a & 8.4), small-sample situations (9th 8.3, 8th 8.2b & 8.4), and proportions (9th 8.4, 8th 8.3 & 8.4). The course schedule contains a 9th-8th edition concordance.

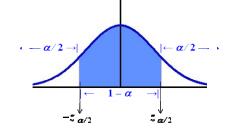
The vocabulary and notation carry over, with some new additions.

 α = significance level = probability of a Type I error

 β = probability of a Type II error

We'll take a closer look at these in a little while.

On this picture of a sampling distribution (two-sided scenario), the blue shaded area represents $100(1 - \alpha)\%$ of the possible sample statistics $(\hat{\theta}, \bar{x}, \hat{p})$ surrounding the population parameter (θ, μ, p) in the middle.



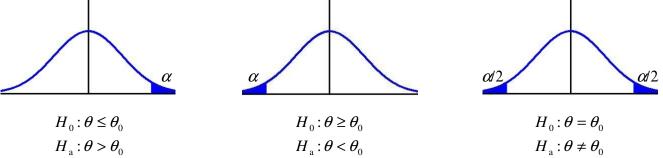
In both large-sample and small-sample-normal-population situations, the sampling distribution is symmetric, so each tail must contain $\alpha/2$.

The left and right boundaries will be the negative and positive values of *z* that mark the lower and upper $100(\alpha/2)\%$.

Here's the underlying concept of a hypothesis test. We'll assume we know something about a population parameter θ . If we're correct, then the sample statistic $\hat{\theta}$ that we calculate has a high probability, $100(1 - \alpha)\%$, of being close to our hypothesized θ . If, however, we get a sample statistic $\hat{\theta}$ which has a low probability of occurring, we'll question whether our initial assumption about population parameter θ was correct. (Think "proof by contradiction".)

Definitions: The initial assumption ("prior belief claim") is called the **null hypothesis**, and is denoted by H_0 . The challenge to the null hypothesis is called the **alternate hypothesis** ("assertion that is contradictory to H_0 ") and is denoted by H_a .

If the sample statistic presents strong enough evidence that H_0 is false, we will "reject H_0 ". If the sample statistic is not strong enough to challenge H_0 , we will "fail to reject H_0 ".



 8^{th} edition approach: The blue-shaded area in each of the pictures above has traditionally been called the "rejection region". If a calculated test statistic fell into the rejection region, the decision would be to reject H_0 . Otherwise the decision would be to fail to reject H_0 .

[Side note: The text shows all null hypotheses as "=". In this class, we'll use " \leq " and " \geq " for one-tailed tests.]

Example A - hypotheses. To be useful, ball bearings need to have a constant mean diameter of 0.50 cm; those much larger or smaller can wreak havoc. A sample of 50 has a mean diameter of 0.51 cm with s = 0.04. What hypotheses should be tested, and why?

Example B - hypotheses. In their 1992 study of human internal body temperature, Mackowiak, Wasserman and Levine had a sample size of 148, and calculated $\bar{x} = 98.25$ and s = 0.73. What hypotheses should be tested, and why?

Example C - hypotheses. A current medical treatment has been effective for 70% of the patients to whom it was administered. In a clinical trial of a new treatment with 26 participants, 19 experienced reduction of symptoms. What hypotheses should be tested, and why?

Before we continue, we need to prove that our null-alternate-hypotheses approach provides what we need. Specifically, do the hypothesis tests described above have a significance level equal to α ? We'll focus on a test of a population mean μ , with the understanding that a proof involving another population parameter would proceed along similar lines.

For a two-tailed *z*-test, our hypotheses are $\begin{aligned} H_0: \mu &= \mu_0 \\ H_a: \mu \neq \mu_0 \end{aligned} .$

Our decision rule would be "reject H_0 if either $\bar{x} \le \mu_0 - z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right)$ or $\bar{x} \ge \mu_0 + z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}}\right)$.

notes on the proof:

$$P(\operatorname{reject} H_{0} \operatorname{when} H_{0} \operatorname{is correct})$$

$$= P\left(\overline{X} \le \mu_{0} - z_{\alpha/2}\left(\frac{\sigma}{\sqrt{n}}\right) \operatorname{ or } \overline{X} \ge \mu_{0} + z_{\alpha/2}\left(\frac{\sigma}{\sqrt{n}}\right) \operatorname{ when} \mu = \mu_{0}\right)$$

$$= P\left(\overline{X} - \mu_{0} \le -z_{\alpha/2}\left(\frac{\sigma}{\sqrt{n}}\right) \operatorname{ or } \overline{X} - \mu_{0} \ge z_{\alpha/2}\left(\frac{\sigma}{\sqrt{n}}\right) \operatorname{ when} \mu = \mu_{0}\right)$$

$$= P\left(\frac{\overline{X} - \mu_{0}}{\sigma/\sqrt{n}} \le -z_{\alpha/2} \operatorname{ or } \frac{\overline{X} - \mu_{0}}{\sigma/\sqrt{n}} \ge z_{\alpha/2} \operatorname{ when} \mu = \mu_{0}\right)$$

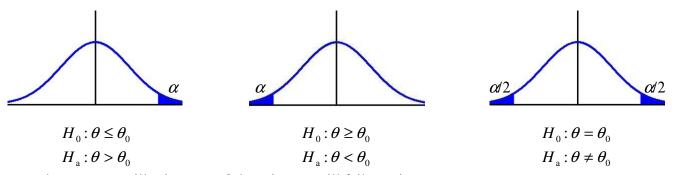
$$= P\left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le -z_{\alpha/2} \operatorname{ or } \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \ge z_{\alpha/2}\right)$$

$$= P\left(Z \le -z_{\alpha/2} \operatorname{ or } Z \ge z_{\alpha/2}\right)$$

$$= \frac{\alpha}{2} + \frac{\alpha}{2}$$

The proof of the lower-tailed *z*-test would be similar, using "<", "-" and z_{α} . The proof of the upper-tailed *z*-test would be similar, using ">", "+" and z_{α} . In practice, when we use *S* as a point estimate for σ , we rely on the CLT: When *n* is large enough, the random variable $Z = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$ has approximately a standard normal distribution.

While the traditional method of determining the decision rule for a hypothesis test involves specifying a rejection region (as is done in the 8th edition of your text), in current practice it is much more common to calculate a *p*-value (as is done in section 8.4 of the 8th edition and throughout chapter 8 in the 9th edition). "The *P*-value is the probability, calculated assuming that the null hypothesis is true, of obtaining a value of the test statistic at least as contradictory to H_0 as the value calculated from the available sample data."



If the *P*-value $\leq \alpha$, we will reject H_0 . Otherwise we will fail to reject H_0 . [Side note: The text shows all null hypotheses as "=". In this class, we'll use " \leq " and " \geq " for one-tailed tests.]

Now we need to prove that the *P*-value provides what we need. Specifically, does the *P*-value decision rule have a significance level equal to α ?

For a two-tailed *z*-test, our hypotheses are $\begin{aligned} H_0 : \theta &= \theta_0 \\ H_a : \theta &\neq \theta_0 \end{aligned}$

|))

Our decision rule is "reject H_0 if either $z \le -z_{\alpha/2}$ or $z \ge z_{\alpha/2}$, which we condense to $|z| \ge z_{\alpha/2}$. Theorem: The *p*-value of a two-sided *z*-test is a function of *z* alone, and moreover $p = p(z) = 2(1 - \Phi(|z|))$.

notes on the proof:

$$|z| \ge z_{\alpha/2}$$

$$\Phi(|z|) \ge \Phi(z_{\alpha/2})$$

$$\Phi(|z|) \ge 1 - \frac{\alpha}{2}$$

$$\frac{\alpha}{2} \ge 1 - \Phi(|z|)$$

$$\alpha \ge 2(1 - \Phi(|z|))$$

That is, $2(1 - \Phi(|z|))$ is the smallest of the set of α s for which H_0 will be rejected.

For the two-tailed hypothesis tests, we must multiply by 2, since α was split into two tails.

For each of the one-tailed tests, $p = p(z) = 1 - \Phi(|z|) = \Phi(-|z|)$, since all of α is in one tail.

The proof of the lower-tailed *z*-test would be similar, using $z \le -z_{\alpha}$. The proof of the upper-tailed *z*-test would be similar, using $z \ge z_{\alpha}$. Last piece of today's Lecture: Errors in Hypothesis Testing.

	Actual: H_0 is True	Actual: H_0 is False
Decision: Reject H_0		
Decision: Fail to Reject H_0		

 α = significance level = probability of a Type I error

 β = probability of a Type II error

While there will be only one value for α , there will be many possible values for β . There are many possible actual values of the population parameter θ for which we would (incorrectly) fail to reject H_0 .

Example A - errors. To be useful, ball bearings need to have a constant mean diameter of 0.50 cm; those much larger or smaller can wreak havoc. A sample of 50 has a mean diameter of 0.51 cm with s = 0.04. In this context, what are the Type I and Type II errors? In this context, which would be more serious?

Example B - errors. In their 1992 study of human internal body temperature, Mackowiak, Wasserman and Levine had a sample size of 148, and calculated $\bar{x} = 98.25$ and s = 0.73. In this context, what are the Type I and Type II errors? In this context, which would be more serious?

Example C - errors. A current medical treatment has been effective for 70% of the patients to whom it was administered. In a trial of 26 patients, 19 experienced reduction of symptoms. In this context, what are the Type I and Type II errors? In this context, which would be more serious?