
Stat 401, section 8.1 Hypotheses and Test Procedures 
notes by Tim Pilachowski 
 

The process of chapter 8 will parallel that of chapter 7, but focus on hypothesis tests rather than confidence 

intervals: definition, theory and underlying concepts (9th and 8th 8.1), large-sample situations (9th 8.2, 8th 8.2a & 

8.4), small-sample situations (9th 8.3, 8th 8.2b & 8.4), and proportions (9th 8.4, 8th 8.3 & 8.4). The course 

schedule contains a 9th–8th edition concordance. 
 

The vocabulary and notation carry over, with some new additions. 
 

α = significance level = probability of a Type I error 
 

 β = probability of a Type II error 
 

We’ll take a closer look at these in a little while. 
 

On this picture of a sampling distribution (two-sided scenario), the blue 

shaded area represents 100(1 – α)% of the possible sample statistics 

( )px ˆ,,θ̂  surrounding the population parameter ( )p,, µθ   in the middle. 
 

In both large-sample and small-sample-normal-population situations, the 

sampling distribution is symmetric, so each tail must contain α /2. 
 

The left and right boundaries will be the negative and positive values of z that mark the lower and upper 

100(α /2)%. 
 

Here’s the underlying concept of a hypothesis test. We’ll assume we know something about a population 

parameter θ. If we’re correct, then the sample statistic θ̂  that we calculate has a high probability, 100(1 – α)%, 

of being close to our hypothesized θ. If, however, we get a sample statistic θ̂  which has a low probability of 

occurring, we’ll question whether our initial assumption about population parameter θ was correct. (Think 

“proof by contradiction”.) 
 

Definitions: The initial assumption (“prior belief claim”) is called the null hypothesis, and is denoted by 0H . 

The challenge to the null hypothesis is called the alternate hypothesis (“assertion that is contradictory to 0H ”) 

and is denoted by aH . 
 

If the sample statistic presents strong enough evidence that 0H  is false, we will “reject 0H ”. 

If the sample statistic is not strong enough to challenge 0H , we will “fail to reject 0H ”. 
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8th edition approach: The blue-shaded area in each of the pictures above has traditionally been called the 

“rejection region”. If a calculated test statistic fell into the rejection region, the decision would be to reject 0H . 

Otherwise the decision would be to fail to reject 0H . 

[Side note: The text shows all null hypotheses as “ = ”. In this class, we’ll use “ ≤ ” and “ ≥ ” for one-tailed tests.] 

α α α/2 α/2 



Example A - hypotheses. To be useful, ball bearings need to have a constant mean diameter of 0.50 cm; those 

much larger or smaller can wreak havoc. A sample of 50 has a mean diameter of 0.51 cm with s = 0.04. What 

hypotheses should be tested, and why? 

 

 

 

 
 

Example B - hypotheses. In their 1992 study of human internal body temperature, Mackowiak, Wasserman and 

Levine had a sample size of 148, and calculated x  = 98.25 and s  = 0.73. What hypotheses should be tested, 

and why? 

 

 

 

 
 

Example C - hypotheses. A current medical treatment has been effective for 70% of the patients to whom it was 

administered. In a clinical trial of a new treatment with 26 participants, 19 experienced reduction of symptoms. 

What hypotheses should be tested, and why? 

 

 

 

 
 

Before we continue, we need to prove that our null-alternate-hypotheses approach provides what we need. 

Specifically, do the hypothesis tests described above have a significance level equal to α? 

We’ll focus on a test of a population mean µ, with the understanding that a proof involving another population 

parameter would proceed along similar lines. 
 

For a two-tailed z-test, our hypotheses are 
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Our decision rule would be “reject 0H  if either 
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 notes on the proof: 
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The proof of the lower-tailed z-test would be similar, using “ < ”, “ – ” and zα. 

The proof of the upper-tailed z-test would be similar, using “ > ”, “ + ” and zα. 



 

In practice, when we use S as a point estimate for σ, we rely on the CLT: When n is large enough, the random 

variable 

n
S

X
Z

µ−
=  has approximately a standard normal distribution. 

 

While the traditional method of determining the decision rule for a hypothesis test involves specifying a 

rejection region (as is done in the 8th edition of your text), in current practice it is much more common to 

calculate a p-value (as is done in section 8.4 of the 8th edition and throughout chapter 8 in the 9th edition). 

“The P-value is the probability, calculated assuming that the null hypothesis is true, of obtaining a value of the 

test statistic at least as contradictory to 0H  as the value calculated from the available sample data.” 
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If the P-value ≤ α, we will reject 0H . Otherwise we will fail to reject 0H . 

[Side note: The text shows all null hypotheses as “ = ”. In this class, we’ll use “ ≤ ” and “ ≥ ” for one-tailed tests.] 

 

Now we need to prove that the P-value provides what we need. 

Specifically, does the P-value decision rule have a significance level equal to α? 
 

For a two-tailed z-test, our hypotheses are 
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Our decision rule is “reject 0H  if either 2/αzz −≤  or 2/αzz ≥ , which we condense to 2/αzz ≥ . 

Theorem: The p-value of a two-sided z-test is a function of z alone, and moreover ( ) ( )( )zzpp Φ−== 12 . 

 notes on the proof: 
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That is, ( )( )zΦ−12  is the smallest of the set of α s for which 0H  will be rejected. 

 

 For the two-tailed hypothesis tests, we must multiply by 2, since α was split into two tails. 

 

 For each of the one-tailed tests, ( ) ( ) ( )zzzpp −Φ=Φ−== 1 , since all of α is in one tail. 

 

The proof of the lower-tailed z-test would be similar, using αzz −≤ . 

The proof of the upper-tailed z-test would be similar, using αzz ≥ . 
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Last piece of today’s Lecture: Errors in Hypothesis Testing. 
 

 Actual: 0H  is True Actual: 0H  is False 
 

Decision: Reject 0H  
 

  

 

Decision: Fail to Reject 0H  
 

  

 

α = significance level = probability of a Type I error 
 

 β = probability of a Type II error 
 

While there will be only one value for α, there will be many possible values for β. There are many possible 

actual values of the population parameter θ  for which we would (incorrectly) fail to reject 0H . 

 

Example A - errors. To be useful, ball bearings need to have a constant mean diameter of 0.50 cm; those much 

larger or smaller can wreak havoc. A sample of 50 has a mean diameter of 0.51 cm with s = 0.04. In this 

context, what are the Type I and Type II errors? In this context, which would be more serious? 

 

 

 

 

 

 

 

 

 

 

Example B - errors. In their 1992 study of human internal body temperature, Mackowiak, Wasserman and 

Levine had a sample size of 148, and calculated x  = 98.25 and s  = 0.73. In this context, what are the Type I 

and Type II errors? In this context, which would be more serious? 

 

 

 

 

 

 

 

 

 

 

Example C - errors. A current medical treatment has been effective for 70% of the patients to whom it was 

administered. In a trial of 26 patients, 19 experienced reduction of symptoms. In this context, what are the Type 

I and Type II errors? In this context, which would be more serious? 

 


