
Stat 401, section 10.1 Single Factor ANOVA 
notes by Tim Pilachowski 
 

In chapter 8 we conducted hypothesis tests in which we compared a single sample’s mean or proportion to some 

hypothesized value. Chapter 9 expanded this to comparing two means or proportions to each other to determine 

whether they were different (∆0 = 0) or whether the difference was some specified value (∆0 = some number 

other than 0). Now in chapter 10, we turn to comparing more than two populations using an analysis of 

variance, or ANOVA. 
 

A single-factor ANOVA focuses on a comparison of more than two population or treatment means. 
 

The usual scenarios are: 

 (a) different populations: sample data collected to compare a shared characteristic 

 (b) same population: sample groups given different treatments and compared. 
 

Notation: 

 I = the number of populations or treatments being compared 

1µ  = the mean of population 1 or the true average response when treatment 1 is applied 

  M  

Iµ  = the mean of population I or the true average response when treatment I is applied. 
 

The letters X and Y were used in two-sample problems (chapter 9) to differentiate the observations in one 

sample from those in the other. Because this is cumbersome for three or more samples, the usual practice is to 

use a single letter with two subscripts. The first subscript identifies the sample number, corresponding to the 

population or treatment being sampled, and the second subscript denotes the position of the observation within 

that sample. 
 

 Xi, j = the random variable that denotes the jth measurement taken from the ith population, or the measurement 

taken on the jth experimental unit that receives the ith treatment. 

 xi, j = the observed value of the jth measurement taken from the ith population/treatment when the experiment is 

performed. 
 

While the text uses Xi j and xi j when both i and j are single-digit numbers, for the Lectures I’ll always have a 

comma. 
 

For the purposes of section 10.1, all sample sizes will be equal, i.e. Jnnn I ==== K21 . 

The individual sample means will be denoted by random variables ,,,, 21 ⋅⋅⋅ IXXX K  where  
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The dot in place of the second subscript signifies that we have added over all values of that second subscript 

(j = 1, 2, … , J) while holding the first subscript value (i) fixed. 

(A parallel is the means of X and Y in the joint probability distributions of chapter 5.) 
 

In a similar fashion, we can calculate the variance of each sample: ( )
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The average of all I times J observations, called the grand mean, is denoted by 
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For a single-factor ANOVA, the hypotheses will be 

 IH µµµ === K210 :  versus 

 :aH  at least two the of the iµ ’s are different. 

For example, if we had I = 3, we would want to fail to reject 0H  only when 321 µµµ == , 

and would want to reject 0H  when 321 µµµ ≠≠    or   321 µµµ ≠=    or   321 µµµ =≠    or   231 µµµ ≠= . 
 

A test of these hypotheses requires that we have available a random sample from each population or treatment. 
 

The observed data will be displayed in a rectangular table, in which samples from the different populations 

appear in different rows of the table, and xi, j is the jth number in the ith row. 
 

Basic assumptions: 

The xi, j’s within any particular sample are independent (i.e. we have a random sample taken from the ith 

population or treatment distribution). 

Different samples are independent of one another. 

Each of the I population or treatment distributions is normal, and each has the same variance σ 
2. 

 

Note that the I sample standard deviations will generally differ somewhat, even when the corresponding 

population/treatment σ ’s are identical. A rough rule of thumb is that if the largest s is not much more than two 

times the smallest, it is reasonable to assume equal σ 
2’s. 

 

If either the normality assumption or the assumption of equal variances is judged implausible, a method of 

analysis other than an ANOVA must be used. 
 

Preliminary calculations – sums of squares: 

The total sum of squares (SST) ( ) ( ) ( )2
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The treatment sum of squares (SSTr) ( ) ( ) ( )2
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The “shortcut” expressions for SST and SSTr are convenient if ANOVA calculations are to be done by hand. In 

practice, the wide availability of statistical software will usually make this unnecessary. 
 

The fundamental identity relating the three sums of squares is SST = SSTr + SSE. The proof is algebraic, and is 

given in outline form in the text. In practice, we’ll calculate SST and SSTr and then use them to find SSE. 
 

Theory: 

If 0H  is true, the J observations in each sample come from a normal population distribution with the same 

mean value µ, in which case the sample means ⋅⋅⋅ Ixxx ,,, 21 K  should be reasonably close to one another. 

The test procedure is based on comparing a measure of differences among the xi’s (“between-samples” 

variation) to a measure of variation calculated from within each of the samples. 
 

SST is a measure of the total variation in the data – the sum of all squared deviations about the grand mean. 
 

The identity SST = SSTr + SSE says that this total variation can be partitioned into two pieces. SSE measures 

variation that would be present (within rows) whether H0 is true or false, and is thus the part of total variation 

that is unexplained by the status of H0. 
 

SSTr is the amount of variation (between rows) that can be explained by possible differences in the µ i’s. H0 is 

rejected if the explained variation is large relative to unexplained variation. 
 



Method: 

Once SSTr and SSE are computed, each is divided by its associated degrees of freedom to obtain a mean square 

(mean in the sense of average). 
 

The mean square for treatments (MSTr) 
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Proposition: 

When H0 is true, E(MSTr) = E(MSE) = σ 
2, whereas when H0 is false, E(MSTr) > E(MSE) = σ 

2. 
 

That is, both statistics are unbiased for estimating the common population variance σ 
2 when H0 is true, but 

MSTr tends to overestimate σ 
2 when H0 is false. 

 

The unbiased nature of MSE, E(MSE) = σ 
2, is a consequence of the fact that ( ) 22

σ=iSE , whether or not H0 is 

true. When H0 is true, each Xi� has the same mean value µ and variance σ 
2/J, so the “sample variance” of the 

⋅iX ’s, 

( )

1

1

2

−

−∑
=

⋅⋅⋅

I

XX
I

i

i

 estimates 
J

2σ
 unbiasedly. Then, multiplying by J gives MSTr as an unbiased estimator 

of σ 
2. 

  

The ⋅iX ’s tend to spread out more when H0 is false than when it is true, tending to inflate the value of MSTr 

when H0 is false, and we would thus want to reject it. 
 

Test statistic: 

Our test statistic, called F, is defined as the ratio of the two mean squares MSTr and MSE: 
MSE

MSTr
=F . 

 

An F distribution arises in connection with any ratio in which there is one number of degrees of freedom 

associated with the numerator, and another number of degrees of freedom associated with the denominator. 

We’ll use 11 −= Iν  and ( )12 −= JIν  to denote the number of numerator and denominator degrees of freedom, 

respectively, for our F statistic. 
 

A value of F that greatly exceeds 1, corresponding to an MSTr much larger than MSE, gives us statistical 

reason to question the assumption that H0 is true. The appropriate form of the rejection region is therefore 

f ≥≥≥≥  a boundary value c. The value c should be chosen to give P(F ≥≥≥≥ c when H0 is true) = α, the desired 

significance level. This necessitates knowing the distribution of F when H0 is true. 
 

 
 

In practice, when we have statistical software we will use it to calculate the P-value. When calculating by hand, 

we’ll use Appendix Table A.9 to determine the critical value c for α = 0.10, 0.05, 0.01, and 0.001. Values of 1ν  

are identified with different columns of the table, and the rows are labeled with various values of 2ν . A 

calculated test statistic f ≥≥≥≥ c implies p ≤ α, in which case we will reject the null hypothesis. 
 

Our computations will be summarized in a tabular format, called an ANOVA table. (See Example A below.) 

 



Example A. A paper in Measurement and Evaluation in Counseling and Development (Oct 90, pp. 121–127) 

discussed a survey instrument called the Mathematics Anxiety Scale for Children (MASC). Suppose the MASC 

was administered to three groups of five sixth graders, with each group having been taught using a different 

method. Test whether the results of the three methods differ (α = 0.05). Data are as follows. 
 

 Group 1 67 50 70 60 55 =⋅1x  =⋅1x  

 Group 2 49 32 65 39 43 =⋅2x  =⋅2x  

 Group 3 40 39 41 60 45 =⋅3x  =⋅3x  

       =⋅⋅x  =⋅⋅x  

 

hypotheses: 
 

 I = J = =1ν  =2ν  
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conclusion: 

 

 



Appendix Table A.9 Critical Values for F Distributions 
 

  νννν 1 = numerator df 

νννν 2 α 1 2 3 4 5 6 7 8 9 

 

0.100 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 

1 0.050 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 

 

0.010 4052.20 4999.50 5403.40 5624.60 5763.60 5859.00 5928.40 5981.10 6022.50 

 

0.001 405,284 500,000 540,379 562,500 576,405 585,937 592,873 598,144 602,284 

0.100 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 

2 0.050 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 

 

0.010 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 

 

0.001 998.50 999.00 999.17 999.25 999.30 999.33 999.36 999.37 999.39 

0.100 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 

3 0.050 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 

 

0.010 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 

 

0.001 167.03 148.50 141.11 137.10 134.58 132.85 131.58 130.62 129.86 

0.100 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 

4 0.050 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 

 

0.010 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 

 

0.001 74.14 61.25 56.18 53.44 51.71 50.53 49.66 49.00 48.47 

0.100 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 

5 0.050 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 

 

0.010 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 

 

0.001 47.18 37.12 33.20 31.09 29.75 28.83 28.16 27.65 27.24 

0.100 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 

6 0.050 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 

 

0.010 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 

 

0.001 35.51 27.00 23.70 21.92 20.80 20.03 19.46 19.03 18.69 

0.100 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 

7 0.050 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 

 

0.010 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 

 

0.001 29.25 21.69 18.77 17.20 16.21 15.52 15.02 14.63 14.33 

0.100 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 

8 0.050 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 

 

0.010 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 

 

0.001 25.41 18.49 15.83 14.39 13.48 12.86 12.40 12.05 11.77 

0.100 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 

9 0.050 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 

 

0.010 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 

 

0.001 22.86 16.39 13.90 12.56 11.71 11.13 10.70 10.37 10.11 

0.100 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 

10 0.050 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 

 

0.010 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 

 

0.001 21.04 14.91 12.55 11.28 10.48 9.93 9.52 9.20 8.96 

0.100 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 

11 0.050 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 

 

0.010 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 

 

0.001 19.69 13.81 11.56 10.35 9.58 9.05 8.66 8.35 8.12 

0.100 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 

12 0.050 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 

 

0.010 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 

 

0.001 18.64 12.97 10.80 9.63 8.89 8.38 8.00 7.71 7.48 
 

 



Appendix Table A.9 Critical Values for F Distributions 
 

  νννν 1 = numerator df 

νννν 2 α 10 12 15 20 25 30 40 50 60 

 

0.100 60.19 60.71 61.22 61.74 62.05 62.26 62.53 62.69 62.79 

1 0.050 241.88 243.91 245.95 248.01 249.26 250.10 251.14 251.77 252.20 

 

0.010 6055.80 6106.30 6157.30 6208.70 6239.80 6260.60 6286.80 6302.50 6313.00 

 

0.001 605,621 610,668 615,764 620,908 624,017 626,099 628,712 630,285 631,337 

0.100 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.47 

2 0.050 19.40 19.41 19.43 19.45 19.46 19.46 19.47 19.48 19.48 

 

0.010 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.48 

 

0.001 999.40 999.42 999.43 999.45 999.46 999.47 999.47 999.48 999.48 

0.100 5.23 5.22 5.20 5.18 5.17 5.17 5.16 5.15 5.15 

3 0.050 8.79 8.74 8.70 8.66 8.63 8.62 8.59 8.58 8.57 

 

0.010 27.23 27.05 26.87 26.69 26.58 26.50 26.41 26.35 26.32 

 

0.001 129.25 128.32 127.37 126.42 125.84 125.45 124.96 124.66 124.47 

0.100 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.80 3.79 

4 0.050 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.70 5.69 

 

0.010 14.55 14.37 14.20 14.02 13.91 13.84 13.75 13.69 13.65 

 

0.001 48.05 47.41 46.76 46.10 45.70 45.43 45.09 44.88 44.75 

0.100 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.15 3.14 

5 0.050 4.74 4.68 4.62 4.56 4.52 4.50 4.46 4.44 4.43 

 

0.010 10.05 9.89 9.72 9.55 9.45 9.38 9.29 9.24 9.20 

 

0.001 26.92 26.42 25.91 25.39 25.08 24.87 24.60 24.44 24.33 

0.100 2.94 2.90 2.87 2.84 2.81 2.80 2.78 2.77 2.76 

6 0.050 4.06 4.00 3.94 3.87 3.83 3.81 3.77 3.75 3.74 

 

0.010 7.87 7.72 7.56 7.40 7.30 7.23 7.14 7.09 7.06 

 

0.001 18.41 17.99 17.56 17.12 16.85 16.67 16.44 16.31 16.21 

0.100 2.70 2.67 2.63 2.59 2.57 2.56 2.54 2.52 2.51 

7 0.050 3.64 3.57 3.51 3.44 3.40 3.38 3.34 3.32 3.30 

 

0.010 6.62 6.47 6.31 6.16 6.06 5.99 5.91 5.86 5.82 

 

0.001 14.08 13.71 13.32 12.93 12.69 12.53 12.33 12.20 12.12 

0.100 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.35 2.34 

8 0.050 3.35 3.28 3.22 3.15 3.11 3.08 3.04 3.02 3.01 

 

0.010 5.81 5.67 5.52 5.36 5.26 5.20 5.12 5.07 5.03 

 

0.001 11.54 11.19 10.84 10.48 10.26 10.11 9.92 9.80 9.73 

0.100 2.42 2.38 2.34 2.30 2.27 2.25 2.23 2.22 2.21 

9 0.050 3.14 3.07 3.01 2.94 2.89 2.86 2.83 2.80 2.79 

 

0.010 5.26 5.11 4.96 4.81 4.71 4.65 4.57 4.52 4.48 

 

0.001 9.89 9.57 9.24 8.90 8.69 8.55 8.37 8.26 8.19 

0.100 2.32 2.28 2.24 2.20 2.17 2.16 2.13 2.12 2.11 

10 0.050 2.98 2.91 2.85 2.77 2.73 2.70 2.66 2.64 2.62 

 

0.010 4.85 4.71 4.56 4.41 4.31 4.25 4.17 4.12 4.08 

 

0.001 8.75 8.45 8.13 7.80 7.60 7.47 7.30 7.19 7.12 

0.100 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.04 2.03 

11 0.050 2.85 2.79 2.72 2.65 2.60 2.57 2.53 2.51 2.49 

 

0.010 4.54 4.40 4.25 4.10 4.01 3.94 3.86 3.81 3.78 

 

0.001 7.92 7.63 7.32 7.01 6.81 6.68 6.52 6.42 6.35 

0.100 2.19 2.15 2.10 2.06 2.03 2.01 1.99 1.97 1.96 

12 0.050 2.75 2.69 2.62 2.54 2.50 2.47 2.43 2.40 2.38 

 

0.010 4.30 4.16 4.01 3.86 3.76 3.70 3.62 3.57 3.54 

 

0.001 7.29 7.00 6.71 6.40 6.22 6.09 5.93 5.83 5.76 

 


