Stat 401, section 10.3 More on Single Factor ANOVA

notes by Tim Pilachowski

First the good news: We're going to skip past "The ANOVA Model" and " β for the F Test" as being beyond the scope of what is needed for Stat 401.

For sections 10.1 and 10.2, we had all sample sizes equal, i.e. $n_1 = n_2 = ... = n_I = J$. But what if all sample sizes are not equal? We can still conduct ANOVA, but with some adjustments to formulas (see below).

When the number of treatments or populations is I = 2, either a two-sample *t* test or ANOVA can be used. However, the two-sample *t* test is more flexible than the *F* test. First, it is valid without the assumption of equal population variances. Second, it can be used for either a two-tailed test $(H_a : \mu_1 = \mu_2)$ or a one-tailed test

$$(H_{a}: \mu_{1} < \mu_{2}, H_{a}: \mu_{1} > \mu_{2}).$$

When the number of treatments or populations is $I \ge 3$, there is unfortunately no general test procedure known to have good properties without assuming equal variances.

Let $J_1, J_2, ..., J_I$ represent the *I* sample sizes, and let $J_1 + J_2 + ... + J_I = n$ total observations.

Individual sample means will be denoted by random variables $\overline{X}_{1.}, \overline{X}_{2.}, \dots, \overline{X}_{I.}$, where $\overline{X}_{i.} = \frac{\sum_{j=1}^{i} X_{i,j}}{J_{.}}$.

Note: We'll still use the notation $x_{i} = \sum_{j=1}^{J_i} x_{i,j}$, so that calculated $\overline{x}_{i} = \frac{x_{i}}{J_i}$.

The average of all $J_1 + J_2 + ... + J_I$ observations, the grand mean, is given by $\overline{X}_{..} = \frac{\sum_{i=1}^{I} \sum_{j=1}^{J_i} X_{i,j}}{n}$.

Note: We'll still use the notation
$$x_{..} = \sum_{i=1}^{I} \sum_{j=1}^{J_i} x_{i,j}$$
, so that calculated $\overline{x}_{..} = \frac{x_{..}}{n}$.

The hypotheses will be

$$H_0: \mu_1 = \mu_2 = ... = \mu_I$$
 versus
 $H_a:$ at least two the of the μ_i 's are different.

We need a random sample from each population or treatment.

Basic assumptions remain the same.

The $x_{i,j}$'s within any particular sample are independent (i.e. we have a random sample taken from the *i*th population or treatment distribution).

Different samples are independent of one another.

Each of the *I* population or treatment distributions is normal, and each has the same variance σ^2 .

Preliminary calculations – sums of squares:

The total sum of squares (SST) =
$$\sum_{i=1}^{I} \sum_{j=1}^{J_i} (x_{i,j} - \overline{x}_{..})^2 = \sum_{i=1}^{I} \sum_{j=1}^{J_i} (x_{i,j})^2 - \frac{1}{n} (x_{..})^2$$
, df = $n - 1$.

The treatment sum of squares (SSTr) = $\sum_{i=1}^{I} \sum_{j=1}^{J_i} (\overline{x}_{i.} - \overline{x}_{..})^2 = \sum_{i=1}^{I} \frac{1}{J_i} (x_{i.})^2 - \frac{1}{n} (x_{..})^2$, df = I - 1.

The error sum of squares (SSE) = $\sum_{i=1}^{I} \sum_{j=1}^{J_i} (x_{i,j} - \overline{x}_{i,\cdot})^2 = SST - SSTr$, df = $\sum_{i=1}^{I} (J_i - 1) = n - I$.

The mean square for treatments (MSTr) = $\frac{\text{SSTr}}{I-1}$. The mean square for error (MSE) = $\frac{\text{SSE}}{n-I}$.

The test statistic remains the ratio of the two mean squares, $F = \frac{\text{MSTr}}{\text{MSE}}$.

df numerator =

When we have statistical software we will use it to calculate the *P*-value. When calculating by hand, we'll use Appendix Table A.9 to determine the critical value *c* for $\alpha = 0.10, 0.05, 0.01$, and 0.001. A calculated test statistic $f \ge c$ implies $p \le \alpha$, in which case we will reject the null hypothesis.

When we reject the null hypothesis, a multiple comparison procedure is needed. This text uses a variation of Tukey's Procedure (the T method) for use when the sample sizes are "reasonably close". In this approach, the

value of each $w_{i,j}$ depends upon the sizes of the two samples being compared: $w = Q_{\alpha,I,n-I} \sqrt{\frac{MSE}{2} \left(\frac{1}{J_i} + \frac{1}{J_j}\right)}$.

As before, list the sample means in increasing order, and underline those pairs that differ by less than $w_{i,j}$.

Any pair of sample means <u>not</u> underscored by the same line corresponds to a pair of population or treatment means that are judged significantly different.

Example A. A paper in *Measurement and Evaluation in Counseling and Development* (Oct 90, pp. 121–127) discussed a survey instrument called the *Mathematics Anxiety Scale for Children* (MASC). Suppose the MASC was administered to three groups of sixth graders, with each group having been taught using a different method. Test whether the results of the three methods differ ($\alpha = 0.05$). Data is as follows.

Group 1	67	50	70	60	55	75		$J_{1} =$	$x_{1.} =$	$\overline{x}_{1.} =$
Group 2	49	32	65	39	43			$J_{2} =$	<i>x</i> ₂ . =	$\overline{x}_{2} =$
Group 3	40	39	41	60	45	30	28	$J_{3} =$	$x_{3.} =$	$\overline{x}_{3.} =$
								<i>n</i> =	<i>x</i> =	$\overline{x}_{} =$

hypotheses:

I =

df denominator =

 $\sum \sum (x_{i,j})^2 =$

SST =

SSTr =

SSE =

MSTr =

MSE =

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	f
Treatments				
Error				X X
Total			X X	X X

critical value c (from Table A.9) =

ANOVA conclusion:

T-method:

 $I = n - I = Q_{\alpha, I, n-I} =$

T-method conclusion: