
Stat 400, section 12.1 Simple Linear Regression Model 
notes by Tim Pilachowski 
 

Recall back to Chapter 5. 
 

Definition: Given two discrete random variables X and Y defined on a sample space S, the joint probability mass 

function is defined for each ordered pair of numbers (x, y) by 
 

p(x, y) = PX,Y (x, y) = P(X = x, Y = y). 
 

Our investigations included independence of jointly distributed random variables, covariance and the 

calculation of the correlation coefficient. We also had a Theorem: If two random variables X and Y are 

independent, then Cov(X, Y) = 0. 
 

But, what if the two random variables are not independent, and there is a correlation (read “connection”, not 

“cause”) between X and Y? Can we specify the nature of the relationship in some meaningful way? 
 

The simplest deterministic mathematical relationship between two variables x and y is a linear relationship 

xy 10 ββ += . That is, the set of pairs (x, y) which relate Y to X determines a line with slope 1β  and y-intercept 

at 0β=y . If the two variables are deterministically related, then for a fixed value of x, the observed value of 

the associated y will always be the same. That is, y will always be x10 ββ + . 
 

If the two variables are not deterministically related, then for a fixed value of x, there is uncertainty in the value 

of the second variable. We’ll call a non-deterministic model a probabilistic model. 
 

In Example A below, we designate Math Anxiety Score as random variable X, and Math Grade as Y. If we 

decide to select a middling value of x = 50 for Math Anxiety, then the observed value y might take on any 

number of values. That is, before the selection of Math Anxiety Score X is made, Math Grade is a random 

variable Y. 
 

More generally, the variable whose value is fixed by the experimenter will be denoted by x and will be called 

the independent, predictor, or explanatory variable. For fixed x, the second variable will be random. We 

denote this random variable Y, and denote its observed value by y, and refer to it as the dependent or response 

variable. 
 

Usually observations will be made for a number of settings of the independent variable. 

We’ll use nxxx ,,, 21 K  to denote values of the independent variable for which observations are made, and let 

iY  and iy , respectively, denote the random variable and observed value associated with ix . Our data will then 

consists of n coordinate pairs ( ) ( ) ( )nn yxyxyx ,,,,,, 2211 K . 
 

A graph of this data is called a scatter plot, and gives preliminary impressions about the nature of any 

relationship. (Go to Example A-1 below.) 
 

For the deterministic model xy 10 ββ += , the actual observed value of y is a linear function of x.  

The appropriate generalization of this to a probabilistic model assumes that the expected value of Y is a linear 

function of x, but that for fixed x the variable Y differs from its expected value by a random amount. 
 

Definition: The Simple Linear Regression Model 

There are parameters 2

10 and,, σββ , such that for any fixed value of the independent variable x, the dependent 

variable is a random variable related to x through the model equation ∈++= xY 10 ββ . 

The quantity ∈  in the model equation is a random variable, assumed to be normally distributed, with 

( ) ( ) 2and0 σ=∈=∈ VE . 
 



The variable ∈  is usually referred to as the random deviation or random error term in the model. In a 

deterministic model, any observed pair (x, y) would correspond to a point falling exactly on the line 

xy 10 ββ += , called the true (or population) regression line. In a probabilistic model, the inclusion of the 

random error term ∈  allows an observed (x, y) pair to fall either above the true regression line (when 0∈> ) or 

below the line (when 0∈< ). In other words, for a fixed value x, there can be more than one observed 

corresponding value for y, some of which may be larger  and some of which may be smaller than the y-value 

calculated using the regression equation. The n coordinate pairs ( ) ( ) ( )nn yxyxyx ,,,,,, 2211 K  resulting from n 

independent observations will thus be scattered about the true regression line. (Go to Example A-2 below.) 
 

Theory: Let x∗ denote a particular value of the independent variable x and 

  =⋅ *xYµ  the expected (or mean) value of Y when x has value x∗ [alternative notation E(Y | x∗)] 

  =⋅

2

*xYσ  the variance of Y when x has value x∗ [alternative notation V(Y | x∗)]. 

 

If we think of an entire population of (x, y) pairs, then *xY ⋅µ  is the mean of all y values for which x = x∗, 

and 2

*xY ⋅σ  is a measure  of how much these values of y spread out above and below the mean value. 

(Go to Example A-3.) 
 

Once x is fixed, the only randomness on the right-hand side of the model equation ∈++= xY 10 ββ  is in the 

random error ∈ , whose mean value and variance are 0 and σ 2, respectively, whatever the value of x. 

 notes on the proof: 
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The change of variables formulas were developed back in Lecture 3.6b. 
 

Replacing x∗ in *xY ⋅µ  by x gives the relation xxY 10 ββµ +=⋅ , which says that the mean value of Y, rather than Y 

itself, is a linear function of x. 
 

The true regression line xy 10 ββ +=  is thus the line of mean values or line of expected values; its height above 

any particular x value is the expected value of Y for that value of x. 
 

The slope β1 of the true regression line is interpreted as the expected change in Y associated with a 1-unit 

increase in the value of x.  The relation 22 σσ =⋅xY  tells us that the amount of variability in the distribution of Y 

values is the same at each different value of x (homogeneity of variance). 
 

For fixed x, Y is the sum of a constant x10 ββ +  and a normally distributed random variable ∈ , so Y itself has a 

normal distribution. Thus, we can use the true regression equation and the normal distribution table to determine 

probabilities that the observed y-values resulting from a selected x* will fall within a given interval. (Go to 

Example A-4 below.) 
 



Example A: A paper in Measurement and Evaluation in Counseling and Development (Oct 90, pp. 121–127) 

discussed a survey instrument called the Mathematics Anxiety Scale for Children (MASC). Suppose the MASC 

was administered to ten fifth graders with the following results: 

MASC Score 67 37 70 40 35 65 40 35 30 40 

Math grade (%) 75 85 60 90 80 75 70 90 95 80 

 

1. Draw a scatter diagram in the space to the right below. (MASC is the independent variable.) 

 
 

 

What preliminary impressions do you have of the relationship (assuming there is one) between MASC score 

and Math grade? 
 

 

 

 

2. Suppose that the true regression line that relates MASC score (x) to Math grade (Y) is xY 5.0100 −= . 

Calculate the value of ∈  for the 6th through the 10th data points. 

 

 

 

 

 

 

3. Explore the meaning of *xY ⋅µ  in the context of MASC score (x) to Math grade (Y) for x* = 40. 

 

 

 

 

 

 

4. Suppose that the true regression line that relates MASC score (x) to Math grade (Y) is xY 5.0100 −=  with 

σ = 3. Find P(Y > 86 when x = 40), P(Y > 86 when x = 45), and P(Y2 exceeds Y1 when X2 = 45, X1 = 40). 

 


