
Stat 401, section 12.2 Estimating Model Parameters 
notes prepared by Tim Pilachowski 
 

 

In the real world, the true population regression is not known (in contrast to our omniscient knowledge in 
section 12.1). Instead, data is collected—observations are made about phenomenon. The point estimate of the 
regression equation is found by finding values that are the best fit for the data. 
 

Hopefully you remember how to find the equation of a line given two points: calculate slope (m), substitute to 
find the y-coordinate of the y-intercept (b), and write the equation (y = mx + b). When there are more than two 
points, and they don’t conveniently line up for us, we use partial derivatives to minimize the difference (error) 
between the observed data and the  estimated regression line or least squares line. The process is called 
regression analysis. We’ll use the same convention as before and use the 

notations 10
ˆandˆ ββ  for the least squares estimates of the linear parameters, 

with 10 and bb  denoting the calculated values of our point estimates. 
 

Example O: A manufacturer has collected preliminary data relating number of 
units produced (x, measured in hundreds) and cost (y, measured in $1000’s). 
Find the equation that best represents cost as a function of number of units 
produced.   answer: xy 05806.3 +=  
 

The data are pictured in the scatterplot to the right. The line of regression will go 
“through the middle”, but the question becomes, “Of all the lines that we might 
draw that seem to fit the data, which is the one that has the least error between the observed (actual) y-value and 

the regression’s (predicted) y-value = xbb 10 + ?” 
 

xi observed yi regression ii xbby 10
ˆ −=  error ( )ii xbby 10 +−  (error)2 

2 4    

5 6    

6 7    

9 8    
 

Since some of the points will lie above the regression line, and some will lie below it, some of the errors will be 
positive and some will be negative. Finding the sum of the errors would result in a “canceling” effect. Instead, 
to keep the value of each error and retain its effect we’ll find the sum of the squared errors. 

 
 
 
 
 

This is the function for which we want a minimum. We’ll use the technique of partial derivatives. (We’ll also 
need the chain rule.) 
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(Example O continued) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The process above involved only four data points. If we had 400, or 4000, the same process would become very 
unwieldy very quickly. We can develop a general formula which can be applied to N = any number of points. 
 

xi observed yi regression y error ( )ii xbby 10 +−  (error)2 

1x  1y  110 xbb +  1101 xbby −−  ( )2

1101 xbby −−  

2x  2y  210 xbb +  2102 xbby −−  ( )2
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M  M  M  M  M  

Nx  Ny  nxbb 10 +  nn xbby 10 −−  ( )2

10 nn xbby −−  

The least-squares error function we want to minimize is 

sum of squared vertical deviations = ( ) ( )∑ −−=
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Using the sum rule and chain rule, we get 
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Note that since we have n points and thus have n terms in our sum, we can replace ∑ 0b  with 0nb . 

Dividing by 2 to get easier numbers and rearranging gives us the system of normal equations. 
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Solving the first equation for 0b  we get xby
n
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Substituting into the second equation and solving for 1b  we get 
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 [computational formula for random variable 1β̂ ] 

(The numerator and denominator above are the text’s computational formulas for 

( )( ) ( )∑∑ −=−−=
2

, xxSyyxxS xxxy .) 

(Go to Examples A-1 and A-2 below.) 



 

Fitted (or predicted) values for random variable Y are obtained by successively substituting x-values into the 

equation of the estimated regression line: nn xyxyxy 1021021101
ˆˆˆ,,ˆˆˆ,ˆˆˆ ββββββ +=+=+= K . The residuals 

are the differences between the observed and fitted y values: nn yyyyyy ˆ,,ˆ,ˆ
2211 −−− K . 

 

In much the same way that the deviations from the mean in a one-sample situation were combined to obtain the 

estimate 
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s , the estimate of σ 2 in regression analysis is based on squaring and summing the 

residuals (as we did earlier in Example O). The text still uses the symbol s 

2 for this estimated variance; you’ll 
have to figure out from the context that it is not the same formula as for a single-sample variance. 
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The error sum of squares (equivalently, residual sum of squares), is given by 
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Important: Rounding errors can compound quickly. Carry as many decimal places as possible when 
calculating SSE and s 

2. 
 

The divisor n – 2 in s 

2 is the number of degrees of freedom associated with SSE and the estimate s 

2. This is a 

result of needing to estimate the two parameters 0β  and 1β , which results in a loss of two degrees of freedom. 

(In a similar fashion, µ  had to be estimated in one-sample problems, resulting in an estimated variance based on 
n – 1 degrees of freedom.) 
 

It can be shown that the random variable S 

2 is an unbiased estimator for σ 
2 (although the estimator S is not an 

unbiased estimator for σ). 
 

(Go to Example A-3 below.) 
 

Different scatterplots exhibit different variability. 
 

    
 0ˆ,ˆˆˆ

110 <+= βββ ii xy  ( )0ˆi.e.,ˆˆ
10 == ββiy  0ˆ,ˆˆˆ

110 >+= βββ ii xy  
 

The points in the first and third scatterplots all fall exactly on the estimated regression line. In these two cases, 
all (100%) of the sample variation in y can be attributed to the fact that x and y are linearly related in 
combination with variation in x. That is, the 1st and 3rd illustrate a deterministic rather than a probabilistic 
relationship. In the middle scatterplot, none (0%) of the sample variation in y can be attributed to a linear 

relationship – the best estimate we ever have for y is the expected value of y, i.e. yyi == 0β̂
)

 for all indices i. 
 

Of course, in actuality, we’d almost never encounter any of these extremes. 



 

A quantitative measure of the total amount of variation in observed y values is given by the total sum of 

squares: ( )
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Total sum of squares is the sum of squared deviations about the sample mean of the observed y values. That is, 
SST is the sum of squared deviations about the horizontal line at height y . 

 
In contrast, because the estimated regression line is the “line of best fit”, the sum of squared deviations about 
the least squares line will always be smaller than the sum of squared deviations about any other line. In 

particular, SSE < SST, unless (as in the middle scatterplot above) yyi =ˆ  is itself the least squares line. 
 

The ratio 
SST

SSE
 is the proportion of total variation that cannot be explained by the simple linear regression 

model, and 
SST

SSE
12 −=r  (a number between 0 and 1) is the proportion of observed y variation which can be 

explained by the linear regression model. The higher the value of r 

2, called the coefficient of determination, 
the more successful is the simple linear regression model in explaining variation in y. 
 
The coefficient of determination can be written in a slightly different way by introducing a third sum of  

squares, regression sum of squares, given by ( ) SSESSTˆSSR
2

−=−=∑ yy . 

Then, we have 
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You may wonder, “Why is the coefficient of determination denoted by r 2 ? ” 
 

And, “Is there any connection to the correlation coefficient r from back in chapter 5 ? ” 
 

The answer is, “Yes”, and the connection is in the notation. 
 

Specifically, coefficient of determination = (correlation coefficient) 2, r 2 = (r) 2 . 
 
The methods and conclusions of regression analysis can be applied both when the values of the independent 
variable are fixed in advance and when the values of the independent variable are random. 
 

The derivations and interpretations are more straightforward in the former case, but can, for this same reason, 
lead to erroneous assumptions about cause and effect. 
 

Recall from chapter 5: “Correlation” means “connection” or “relationship”. 
Correlation does not necessarily mean “cause”. 
 

There may be a cause-and-effect relationship, but regression analysis alone will not tell us whether there is or 
not. A much more extensive and rigorous statistical analysis is required. 
 



Example A: A paper in Measurement and Evaluation in Counseling and Development (Oct 90, pp. 121–127) 
discussed a survey instrument called the Mathematics Anxiety Scale for Children (MASC). Suppose the MASC 
was administered to ten fifth graders with the following results: 
MASC Score 67 37 70 40 35 65 40 35 30 40 
Math grade (%) 75 85 60 90 80 75 70 90 95 80 
A-1. Use the formulas derived above to find the least-squares regression equation. 
 

 x y xy 2
x  

2y  

 67 75    

 37 85    

 70 60    

 40 90    

 35 80    

 65 75    

 40 70    

 35 90    

 30 95    

 40 80    
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The least squares (estimated) regression equation is 
 

Plot the estimated regression equation on the scatterplot above. 



 

The estimated regression equation line can be used to 1) obtain a point estimate of the expected value of Y for a 
chosen x = x*, or 2) predict the Y value for a single new observation made at a chosen x = x*. 
 
A-2. Estimate the expected value for the Math grade of students whose MASC score is 50. 
 
 
 

In practice, it is necessary to avoid predicting Y values for x-values much outside the range of the sample. The 
best-fit line is based on the data at hand, and may not extrapolate outside that original data. 
 

A-3. Estimate the variance for Math grades versus MASC score. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A-4. Calculate the coefficient of determination for Math grades versus MASC score. 
 
 
 
 
 
 
 

 
 
 
 
 
 
Example O revisited: Earlier we found the estimated linear regression equation the long way. For yourself for 
practice recalculate the estimated linear regression equation using the shortcut formulas, and then find the 
variance and the coefficient of determination.   answers: 06.358.0ˆ += xy ; ≈ 0.17; ≈ 0.96 


