
Stat 400, section 12.4 Inferences about *xY ⋅µ , Prediction of Y Values 
notes by Tim Pilachowski 
 

So far, we have calculated point estimates for parameters 10 and ββ , and denoted our calculated statistics as 

10
ˆandˆ ββ . We then formulated an estimate of the true linear regression equation, xY 10 ββ += , and denoted it 

as *ˆˆˆ
10 xY ββ += . Once we have tested the utility of our model, and found it to be statistically significant, the 

y-values generated can be justifiably regarded either as a point estimate of *xY ⋅µ , the expected or true average 

value of Y when x = x∗, or as a prediction of the Y value that will result from a single observation made when 

x = x∗. 
 

The point estimate or prediction by itself gives no information concerning how precisely *xY ⋅µ  has been 

estimated or Y has been predicted. This can be remedied by developing a confidence interval (CI) for *xY ⋅µ  and 

a prediction interval (PI) for a single Y value. 
 

Before we obtain sample data, both 10
ˆandˆ ββ  are subject to sampling variability – that is, they are both 

statistics whose values will vary from sample to sample. 
 

For example, suppose (as we did in Lecture 12.1 Example A-2) that the true regression line that relates MASC 

score (x) to Math grade (Y) is xY 5.0100 −= . 

The sample data we used gave us *52061.08958.103ˆ xY −= . 

A different sample might have given us *51223.08034.99ˆ xY −= , or *48654.01123.100ˆ xY −= . 
 

That is, *ˆˆˆ
10 xY ββ +=  itself varies in value from sample to sample, so it is a statistic. If the true intercept and 

slope of the population line are the values 100 and – 0.5, respectively, and x∗ = 50, then this statistic is trying to 

estimate the value 100 – 0.5(50) = 75. 

The estimate from the sample we used would be 103.8958 – 0.52061(50) = 77.8653. 

The estimates from the other two possible samples given as examples above would be 99.8034 – 0.51223(50) = 

74.1919 and 100.1123 – 0.48654(50) = 75.7853 respectively. 
 

Visually, we could see the differences between the (supposed) true regression line and the three (supposed) 

generated estimated regression lines by graphing them on the same grid. 
 

The text provides such a visualization for its Example 10, which used simulations to generate 20 estimated lines 

of regression. 

 

Note that there appears to be more variation in the value of Ŷ  on the far left and far right than there is “in the 

middle”. That is, as we increase the distance of x* from x , we observe more variation in estimated/predicted 

values for random variable Y. 
 

 



Methods for making inferences about 1β  were based on properties of the sampling distribution of the statistic 

1β̂ . In the same way, inferences about the mean Y value *10 xββ +  are based on properties of the sampling 

distribution of the statistic *ˆˆ
10 xββ + . 

 

Substitution of the expressions for 10
ˆandˆ ββ  into *ˆˆ

10 xββ +  followed by some algebraic manipulation leads to 

the representation of *ˆˆ
10 xββ +  as a linear function of the 

i
Y ’s. 
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Note that n, the 
i

x ’s and x∗ are fixed values. Application of the change of variables rules of Lecture 3.6b (used 

again in chapter 5) to the linear function above gives the following properties. 

 

Proposition: 

Let *ˆˆˆ
10 xY ββ +=  where x∗ is some fixed value of x. 

1. The mean value of Ŷ  is ( ) ( ) **ˆˆˆ
10*ˆˆ10
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. That is, *ˆˆˆ
10 xY ββ +=  is an unbiased 

estimator for *10* xxY ββµ +=⋅ . 

2. The variance of Ŷ  is ( ) ( ) ( )
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*1*1ˆ σσσ  and ( )YV
Y

ˆ
ˆ =σ . 

The estimated standard deviation of *ˆˆ
10 xββ + , denoted by 

*ˆˆˆ
10

or
xY

ss
ββ +

, results from replacing σ with its 

estimate s: 
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3. Ŷ  has a normal distribution. 
 

The variance of *ˆˆ
10 xββ +  is smallest when xx =*  and increases as *x  moves away from x  in either 

direction. That is, the estimator of *10* x
xY

ββµ +=⋅  is more precise when *x  is near the center of the 
i

x ’s 

than when it is far from the values at which observations have been made. This, in turn, implies that both the CI 

and PI are narrower for an *x  near x  than for an *x  far from x . Most statistical computer packages will 

provide both *ˆˆ
10 xββ +  and 

*ˆˆ
10 x

s
ββ +

 for any specified *x  upon request. 

 

Just as inferential procedures for 1β  were based on the t variable obtained by standardizing 1β̂ , a t variable 

obtained by standardizing *ˆˆ
10 xββ +  leads to a confidence interval and test procedures for our estimated linear 

regression equation. 
 

Theorem: The variable 
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 has a t distribution with n – 2 degrees of 

freedom. 
 

The rationales/proofs of this Theorem and the Proposition above both rely on the same observations about 

normality that we’ve already encountered and used in sections 12.1 through 12.3. 
 

Appropriate algebraic manipulation of this T formula provides us a way to construct a confidence interval. 

 



A 100(1 – α )% confidence interval for *10* xxY ββµ +=⋅ , the expected value of Y when x = x∗, is given by 

( ) ( )
Ynxn

stystx ˆ2,*ˆˆ2,10
2102

ˆ*ˆˆ
−+− ±=±+ αα ββ

ββ . 

 

This CI is centered at the point estimate for *xY ⋅µ  and extends out to each side by an amount that depends on the 

confidence level and on the extent of variability in the estimator on which the point estimate is based. 
 

(Go to Example A-1 below.) 
 

Tests of hypotheses about x10
ˆˆ ββ +  are based on the test statistic T obtained by replacing *10 xββ +  in the 

numerator of the T formula by the null value 0µ . The test would be upper-, lower-, or two-tailed according to 

the inequality in aH . 
 

Rather than calculate an interval estimate for *xY ⋅µ , an investigator may wish to obtain an interval of plausible 

values for the value of Y associated with some future observation when the independent variable has value x∗.  
 

A CI refers to a parameter, or population characteristic, whose value is fixed but unknown to us. In contrast, a 

future value of Y is not a parameter but instead a random variable; for this reason we refer to an interval of 

plausible values for a future Y as a prediction interval rather than a confidence interval. 
 

The error of estimation (i.e. for a CI) is ( )xx 1010
ˆˆ* ββββ +−+ , a difference between a fixed (but unknown) 

quantity and a random variable. 

The error of prediction (i.e. for a PI) is ( )xY 10
ˆˆ ββ +− , a difference between two random variables. 

 

There is thus more uncertainty in prediction than in estimation, so a prediction interval will be wider than a 

confidence interval. 
 

Because the future value Y is independent of the observed iY ’s, 

 Variance of prediction error ( )( )*ˆˆ
10 xYV ββ −−=  
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Furthermore, because ( ) *10 xYE ββ +=  and ( ) **ˆˆ
1010 xxE ββββ +=+ , the expected value of the prediction 

error is ( )( ) 0*ˆˆ
10 =+− xYE ββ . It can then be shown that the standardized variable 
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has a t distribution with n – 2 degrees of freedom. 
 

Appropriate algebraic manipulation of this T formula provides us a way to construct a prediction interval. 
 

 A 100(1 – α )% prediction interval for a future Y observation to be made when x = x∗, is given by 
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The interpretation of the prediction level 100(1 – α)% is analogous to that of previous prediction levels. If the 

formula is used repeatedly, in the long run the resulting intervals will actually contain the observed y values 

100(1 – α)% of the time. 
 

(Go to Example A-2 below.) 
 
 

Example A: A paper in Measurement and Evaluation in Counseling and Development (Oct 90, pp. 121–127) 

discussed a survey instrument called the Mathematics Anxiety Scale for Children (MASC). Suppose the MASC 

was administered to ten fifth graders with the following results: 

MASC Score 67 37 70 40 35 65 40 35 30 40 

Math grade (%) 75 85 60 90 80 75 70 90 95 80 
 

From Lectures 12.1 and 12.2, we have 

52061.0ˆ,8958.103ˆ,52061.0ˆ,1000,9.2064,1075,9.45 101 −≈≈−≈≈≈−≈= βββyyxxyx SSSx  

SSE ≈ 440.3482, SST ≈ 1000, SSR ≈ 559.6518, 559652.0,04353.55 22 ≈≈ rs . 
 

1. Construct 95% confidence intervals for the mean Math grade for all students who have a MASC score of 

a) 50, and b) 35. Compare and contrast the two intervals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Construct 95% prediction intervals for the mean Math grade for all students who have a MASC score of 

a) 50, and b) 35. Compare and contrast the two intervals with each other, and with the CIs constructed above. 


