
Stat 400, section 12.5 Correlation 
notes by Tim Pilachowski 
 

First of all, a look back at Lecture 5.2. 
 

The variance of a single random variable X gives an indication of how the values vary in relationship to the 

mean. Given two random variables X and Y, we’ll be interested in how the two vary in relationship to each 

other. The covariance between two random variables is 
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However, as with single random variables, these calculations can become quite onerous. If we were to multiply 

( ) ( )XX yx µµ −∗− , then find expected value for each term separately before recombining, we’d get a shortcut: 
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Covariance of two random variables has a basic problem that it shares with variance of one random variable: the 

value alone doesn’t tell us much. Given a random variable X with variance 10
2

=Xσ , and a linear 

transformation Y = 5X, then 2505
222

=∗= XY σσ . In other words, the size of the values of X has a direct effect 
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It is extremely important that we note here that the formulas given above were applied to populations. 
 

Now that we are considering samples, we consider again the question first posed in chapter 6. Since we don’t 

usually know the actual value of a population parameter (in this case population correlation ρ), can we find a 

way to take sample data and calculate a point estimate? 
 

The answer is “Yes”. Our point estimate of the population correlation coefficient ρ is the sample correlation 

coefficient r. The sample correlation coefficient r is a measure of the strength of the relationship between the 

ii yx and  values in a sample. 
 

Given n numerical pairs ( ) ( ) ( )nn yxyxyx ,,,,,, 2211 K , it is natural to speak of x and y as having a positive 

relationship if large x’s are paired with  large y’s and small x’s with small y’s. Similarly, if large x’s are paired 

with small y’s and small x’s with large y’s, then a negative relationship between the variables is implied. 
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ix  above the mean x  will tend to be paired with a iy  above the mean y . As a consequence, we would expect 

( )( ) ( )( ) 0>++=−− yyxx . This product will also be positive whenever both ii yx and  are below their 

respective means: ( )( ) ( )( ) 0>−−=−− yyxx . In other words, a positive relationship between ii yx and  values 

in a sample implies that yxS  will be positive. 
 

An analogous argument shows that when the relationship is negative, yxS  will be negative, since most of the 

products ( )( )yyxx −−  will be negative. 



 

Unfortunately, yxS  has the same defect as covariance did in chapter 5: the value alone doesn’t tell us much. By 

changing the unit of measurement for either x or y, yxS  can be made either arbitrarily large in magnitude or 

arbitrarily close to zero. So, just as we did to find population correlation coefficient in chapter 5, we use a 

denominator to “standardize” so that the calculated value will not depend on the particular units used to 

measure x and y. 
 

Definition: The sample correlation coefficient for the n pairs ( ) ( ) ( )nn yxyxyx ,,,,,, 2211 K  is given by 
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Non-technical explanation: The numerator expresses the relationship between x and y when they are considered 

as a system. The denominator expresses the relationship between x and y when they are considered separately. 

If the “system” relationship is a large portion/fraction of the “separate” relationship, we’ll conclude that the 

“system” relationship is very strong. If the “system” relationship is a small portion/fraction of the “separate” 

relationship, we’ll conclude that the “system” relationship is very weak. 
 

Specifically, if x and y have a very strong relationship, the value of r will be close to 1 or – 1. If x and y have a 

very weak relationship, the value of r will be close to 0.  
 

    
 1−=r  0=r  1=r  
 

The points in the first and third scatterplots all fall exactly on the estimated regression line. In this case, all of 

the relationship/connection/correlation between x and y can be attributed to their existing in a system. In the 

middle scatterplot, none of the relationship/connection/correlation between x and y can be attributed to their 

existing in a system. [An analogy for “zero correlation” from chapter 5 is the concept of “independence”.] 
 

Of course, in actuality, we’d almost never encounter any of these extremes using sample data. 
 

Another important property of the sample correlation coefficient r: The value of r does not depend on which of 

the two variables under study is labeled x and which is labeled y. This is very different from regression analysis, 

where virtually all quantities of interest ( 2

01 ,ˆ,ˆ sββ ,etc.) depend on which of the two variables is considered the 

independent variable X and which is treated as the dependent variable Y. 
 

One more note: The square of the sample correlation coefficient r equals the value of the coefficient of 

determination that would result from fitting the simple linear regression model. Symbolically, (r)2 = r 
2. 

 

The sign of r indicates direction of the correlation; the magnitude of r indicates strength of the correlation. This 

is the text’s rule of thumb: | r | < 0.5 weak, 0.5 < | r | < 0.8 moderate, | r | > 0.8 strong correlation. 
 

IMPORTANT: Correlation is not the same thing as causation. No matter how strong the correlation may be, 

we still cannot say that “X causes Y” or “Y causes X”. While it may be so, it might also be true that “both X and 

Y are the result of some other unknown factor(s)”. Consider unemployment vs. inflation, or weight vs. height. 
 

(Go to Example A-1 below.) 
 



Two things to note about the interpretation of sample correlation coefficient r. 
 

1) The strength or weakness of the correlation between sample x and sample y values does not tell us about the 

value of the linear regression slope estimate 1β̂ . The value of r tells us how closely (or not) the dots in the 

scatterplot are aligned, not how steep (or shallow) the alignment is. 
 

2) A sample correlation value r might indicate a strong relationship, but we still need to determine whether the 

correlation is statistically significant. (This will depend in part on both value of r and sample size n). 
 

The small-sample intervals and test procedures presented in Chapters 7–9 were based on an assumption of 

population normality. To test hypotheses about r, an analogous assumption about the distribution of pairs of 

(x, y) values in the population is required. We are now assuming that both X and Y are random variables, 

whereas much of our regression work focused on x fixed by the experimenter. 
 

The 8th edition of the text includes an explanation and graphic of an assumed normal bivariate distribution of X 

and Y. The 9th edition simply refers back to section 5.2. Here’s the important idea: ρ = 0 implies X and Y are 

independent. 
 

Proposition: When 0:0 =ρH  is true, the test statistic 
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Because ρ measures the extent to which there is a linear relationship between the two variables in the 

population, the null hypothesis 0:0 =ρH  states that there is no such population relationship. 
 

In Section 12.3, we used the t ratio 
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context of regression analysis. The test procedures of 12.5 and 12.3 are completely equivalent. With a lot of 

algebraic manipulation, we could show that 
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When interest lies only in assessing the strength of any linear relationship rather than in fitting a model and 

using it to estimate or predict, the 12.5 test statistic formula just presented requires fewer computations than 

does the t-ratio of 12.3. 
 

The test of 12.5 can be useful to a researcher who wants to verify the significance of a correlation as a means of 

deciding whether development of the linear regression equation is worthwhile. 
 

IMPORTANT: The sample correlation coefficient r and its test of significance will only tell us about a linear 

relationship between random variables X and Y. Other procedures and tests would be needed to investigate 

quadratic, exponential or logarithmic relationships. 
 

IMPORTANT: Correlation is not the same thing as causation. No matter how strong the correlation may be, 

we still cannot say that “X causes Y” or “Y causes X”. While it may be so, it might also be true that “both X and 

Y are the result of some other unknown factor(s)”. Consider unemployment vs. inflation, or weight vs. height. 

  

(Go to Example A-2 below.) 

 

 

 

 
 
 



Example A: A paper in Measurement and Evaluation in Counseling and Development (Oct 90, pp. 121–127) 

discussed a survey instrument called the Mathematics Anxiety Scale for Children (MASC). Suppose the MASC 

was administered to ten fifth graders with the following results: 

MASC Score 67 37 70 40 35 65 40 35 30 40 

Math grade (%) 75 85 60 90 80 75 70 90 95 80 
 

From Lectures 12.1 and 12.2, we have 1000,9.2064,1075 ≈≈−≈ yyxxyx SSS . 

 

1. Calculate the sample correlation coefficient r and interpret its value in the context of anxiety score vs. Math 

grade. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Test the statistical significance of the sample correlation coefficient r calculated in 1) above. 


