
Stat 401, section 14.1 Goodness of Fit – Category Probabilities Specified 
notes by Tim Pilachowski 
 

Recall back to Lectures 6.1c, 8.4 (8.3 in the 8th edition) and 9.4 when we dealt with population proportions. 
 

Vocabulary from 6.1c: 

The point estimate for a population proportion was a sample proportion 
n

X
p ==ˆ . 

 

Hypothesis test for a single sample, from section 8.4 (8.3 in the 8th edition): 

We did a little mathematical finagling with the the z-score formula for binomial distributions to get a z-score 

formula for proportions. 
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For the population proportion p in the numerator, and for the standard error (in the denominator), we used the 

value from the null hypothesis, 0p . Likewise, for the population parameter q, we used the null value 

00 1 pq −= . Note that we could express the numerator as “observed value minus expected value”. 
 

For the hypothesis test involving proportions, we used the same rule of thumb as we did for using a normal 

distribution to approximate a binomial distribution. If both 100 ≥∗ pn  and also 100 ≥∗ qn , then the hypothesis 

test is considered a large-sample test. 
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We tested to verify a large-sample situation, then computed the value of the test statistic: 
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Hypothesis test for comparing two samples, from 9.4: 

We only considered cases where 10,10,10,10 2211 ≥≥≥≥ qnpnqmpm , that is, a large sample case for 

which both sampling distributions, 
m
Xp =1

ˆ  and 
n
Yp =2

ˆ , are approximately normal. Additionally, we focused 

solely on a hypothesis test for which 0: 210 =− ppH  (which matches practice for the vast majority of actual 

situations). 
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Verify a large-sample situation, and compute the value of the test statistic: 
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Note that, once again, we could express the numerator as “observed value minus expected value”. 

α α α/2 α/2 

α α α/2 α/2 

number of successes 

total number tested 



 

In all of the previous encounters with population proportions, we were considering a binomial experiment 

consisting of a sequence of independent trials in which each trial could result in one of two possible outcomes: 

S (for success) and F (for failure). The probability of success, denoted by p, was assumed to be constant from 

trial to trial, and the number of trials, n, was fixed at the outset of the experiment. 
 

A multinomial experiment generalizes a binomial experiment by allowing each trial to result in one of k 

possible outcomes, where k > 2. 
 

Example A background. Human beings have the following blood types. 

 
In addition to the A and B antigens, there is a third antigen called the Rh factor, which can be either present (+) 

or absent ( – ). In general, Rh negative blood is given to Rh-negative patients. Rh positive blood or Rh negative 

blood may be given to Rh positive patients. 
 

So, there are eight categories of blood type (k = 8):  
 

The universal red cell donor has blood type O – . 

The universal plasma and platelet donor has blood type AB + . 
 

Side note: While whole blood has a shelf life of 42 days, donated platelets must be used within 5 days of 

collection. There is a constant need for platelets, which are an essential part of the treatment for any low-platelet 

condition, including some types of cancer. You can donate platelets every seven days, up to 24 times a year. 
 

According to the American Red Cross, proportions of the different blood types in the U.S. population are: 

  Caucasian African American Hispanic Asian 

O + 37% 47% 53% 39% 

O – 8% 4% 4% 1% 

A + 33% 24% 29% 27% 

A – 7% 2% 2% 0.5% 

B + 9% 18% 9% 25% 

B – 2% 1% 1% 0.4% 

AB + 3% 4% 2% 7% 

AB – 1% 0.3% 0.2% 0.1% 
 

Why would this information be important? As one example, some genetic disorders are much more effectively 

treated by using blood from a donor who comes from the same ethnic group. 
 

Notation: In general, we will refer to the k possible outcomes on any given trial as categories, and ip  will 

denote the probability that a trial results in category i. If the experiment consists of selecting n individuals or 

objects from a population and categorizing each one, then ip  is the proportion of the population falling in the 

i 

th category. This type of experiment will be approximately multinomial provided that n is much smaller than 

the population size. 
 

Why would we need n “much smaller than the population size”? 

 

 

 

 

 

 
 



The null hypothesis of interest will specify the value of each ip .  
 

Example A. If we were to test the proportions of blood types among ethnic Hispanics in the U.S. population 

given in the table above, what would the null hypothesis be? 

 

 
For a multinomial analysis, the alternative hypothesis will state that 0H  is not true – that is, that at least one of 

the pi’s has a value different from that asserted by 0H  (implying that at least two must be different, since all of 

the proportions added together must equal 1). 

[This is similar to the statement of the alternate hypothesis in an ANOVA.] 
 

Notation: The notation 0ip , “p sub i nought”, will represent the value of ip  claimed by the null hypothesis. 

[This is the same as the notation for the null value in linear regression analysis, 01β .] 

In the “blood types among ethnic Hispanics” Example A above, 29.0,04.0,53.0 030201 === ppp , etc. 
 

Theory: Before a multinomial experiment is performed, the number of trials that will result in category i 

(i = 1, 2, … , k) is a random variable – just as the number of successes and the number of failures in a binomial 

experiment are random variables. This random variable will be denoted by iN , and its observed value by in . 

Since each trial results in exactly one of the k categories, (that is, each observation in placed in exactly one 

category), it will always be true that nN
k

i

i =∑
=1

, where n is the total number of trials. Likewise, the sum of the 

observed in ’s will necessarily be n. For example, in an experiment with n = 50 total trials and k = 4, random 

variable 1N  might take on value 1n  = 10, 2N  might take on value 2n  = 15, and 3N  might take on value 3n  = 5. 

Then 4N  must take on value 4N  = 20. 
 

In other words, there is an underlying assumption that the k categories are comprehensive, and every 

observation will fit into one of those categories. The sum of the in ’s will equal the sample size n, and in terms 

of proportions, 1=∑ ip . 
 

For a multinomial analysis, the hypotheses will be stated in terms of relative frequency, ip , but the test statistic 

will be calculated in terms of frequency, in . 
 

In a binomial experiment, the expected number of successes and expected number of failures are np and nq, 

respectively. (Recall the formula for the mean of a binomial probability distribution, Lecture 3.4.) When 

)(: 000 qqppH ==  is true, the expected numbers of successes and failures are 00 and qnpn ∗∗ , respectively. 
 

Similarly, in a multinomial experiment the expected number of trials resulting in category i is 

( ) ii pnNE =    (i = 1, 2, … , k). 

When 00220110 ,,,: kk ppppppH === K  is true, these expected values become 

( ) ( ) ( ) 0022011 ,,, kk pnNEpnNEpnNE === K . 
 

Example A revisited. A researcher wants to test the proportions of blood types among ethnic Asians in the U.S. 

population with n = 800. 
 

What would the hypotheses be? 

 

 
The expected frequencies when 0H  is true are 

 



The in ’s and corresponding expected frequencies are often displayed in a tabular format. In this blood type 

Example, given Asian ethnicity, for n = 800 (and k = 8), this table might look like the one below. 
 

 

Category 
O+ 

(i = 1) 

O– 

(i = 2) 

A+ 

(i = 3) 

A– 

(i = 4) 

B+ 

(i = 5) 

B– 

(i = 6) 

AB+ 

(i = 7) 

AB– 

(i = 8) 

 

Row total 

Observed 
1n  2n  3n  4n  5n  

6n  7n  8n  n = 800 
 

Expected 

 

         

 

Note that the Expected values are those that are calculated assuming the null hypothesis is true. 
 

The Observed in ’s are usually referred to as observed cell counts (or observed cell frequencies), and Expected 

values ( ) 0ii pnNE =  are called the corresponding expected cell counts under H0. When H0 is true, each in  

should be reasonably close to its corresponding ( ) 0ii pnNE = . If, however, several of the observed counts 

differ substantially from their expected counts, we may have sufficient evidence to conclude that the actual 

values of the ip ’s differ markedly from what the null hypothesis asserts. 
 

The test procedure involves assessing the discrepancy between each Observed in  and its associated Expected 

value ( ) 0ii pnNE = , with 0H  being rejected when at least two discrepancies are sufficiently large. 

 

We might, in a method similar to what we did when comparing multiple population means in Chapter 10, base 

our measure of discrepancy on the squared deviations ( ) ( ) ( )2

0

2

022

2

011 ,,, kk pnnpnnpnn −−− K , and 

calculate a sum of squares, ( )∑ −
2

0ii pnn . However, since we are testing proportions, equal numeric 

differences might translate into very different proportions. In the text’s example, the authors suppose 

100,95 011 == pnn , 10and5 022 == pnn . In both cases the squared numeric difference is 25. But, 951 =n  

is only 5% less than its expected value 10001 =pn , while 52 =n  is 50% less than its expected value 

1002 =pn . 

 

To take relative magnitudes of the deviations into account, we will take each squared deviation and divide it by 

its corresponding expected count: 
( ) ( )
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Note that this value will always be positive. 
 

 

The probability distribution of this statistic is neither a Z nor a T distribution, but is rather one called a 

chi-squared ( )2χ  distribution. (See text section 4.4. In my Stat 400 Lectures I bypassed this distribution.) 
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The chi-squared distribution has a single parameter, ν = k – 1 degrees of freedom, with possible values 

1, 2, 3, … . (There are only k – 1 “freely determined” cell counts: once any k – 1 are known, the remaining one 

is uniquely determined since the sum must equal n.) Analogous to the critical value tα,ν for the t distribution, 

2

,ναχ  is the value such that α of the area under the 2χ  curve lies to the right of 2

,ναχ . 

 
 

Selected values of 2

,ναχ  are given in Appendix Table A.7. We’ll interpret the 2χ  test statistic in the same way 

that we interpreted the F statistic in Chapter 10. A value of the test statistic which is greater than the value of 

the critical value, calculated 2

1,

2

−≥ kαχχ , will imply P-value ≤ α, and we will reject the null hypothesis. 
 

Just as with other hypothesis tests, we have some underlying assumptions. We must have a simple random 

sample of independent observations, for which there are k > 2 categories. All observations must be used. Data 

can be expressed either as frequency, or as relative frequency that is then converted to a frequency. The rule of 

thumb for being able to use a 2χ  test is that for all cells, we must have 50 ≥ipn  for all categories. 

 

Example B: Each year, DuPont Automotive releases its Color Popularity Report, a study analyzing and 

predicting color trends throughout the world.  

 

 
 



The new-car-sales manager of a dealership, knowing that color preferences can change from one year to the 

next, polls 200 recent customers and gets the following results: White, 23%; Black, 21%; Silver, 18%; Gray, 

14%; Red, 8%; Blue, 6%; Brown/Beige, 6%; Green, 1%; Yellow/Gold, 1%; Others, 2%. Do the poll results 

indicate that the dealership should adjust the proportions of colors that they keep in their inventory (α = 0.05)? 
 

Category Observed 

ii pnn ˆ=  

Expected 

0ipn=  

( )
( )0ii pnn

EO

−=

−
 

( )

( )2

0

2

ii pnn

EO

−=

−
 

( ) ( )
0

2

0
2

i

ii

pn

pnn

E

EO −
=

−
 

 

White 
 

     

 

Black 
 

     

 

Gray 
 

     

 

Silver 
 

     

 

Blue 
 

     

 

Brown 
 

     

 

Red 
 

     

 

Green 
 

     

 

Yellow 
 

     

 

Other 
 

     

    ( ) ( )
=== ∑∑

−−

0

2
0

2
2

i

ii

pn

pnn

E

EOχ  
 

 

IMPORTANT: The symbol 2χ  is a notation! Do not square the sum in the last column. 
 

hypotheses: 

 

 

calculations for Observed ii pnn ˆ= : 

 

 

 

 

 

 

 

 

calculations for Expected 0ipn= : 
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critical value: 

 

 

 

conclusion: 

 

 

 

 

 

 

 

 

We have applied the chi-squared test to a situation in which k > 2. However, it can also be used when k = 2. Not 

surprisingly, the the chi-squared test for k = 2 is mathematically equivalent to the “comparison of two 

population proportions test” we used in Lecture 8.4 (8.3 in the 8th edition). It can be shown that ( ) 22
χ=Z  and 

( ) 2

1,

2

2/ αα χ=z  so that 2

1,

2

αχχ >  if and only if 2/αzZ ≥ . 
 

IMPORTANT: As is the case with all statistical test procedures, one must be careful not to confuse statistical 

significance with practical significance. A calculated 2χ  that is greater than a critical value 2

1, −kαχ  may be a 

result of a very large sample size rather than any practical differences between the hypothesized 0ip ’s and true 

ip ’s. Before rejecting 0H , the ip̂ ’s should be examined to see whether they suggest a model different from 

that of 0H  from a practical point of view. 
 

Good news: We’re not going to consider the use of Table A.11 to find P-values for the 2χ  test statistic. For this 

class, we’ll either rely on software to calculate the P-value or we’ll use the “rejection region” method used in 

Example B above. (You might recognize this as the same process used to evaluate the F-distribution test 

statistic in chapter 10.) 
 

We’ll also be skipping “ 2χ  When the iP ’s Are Functions of Other Parameters”. 
 



[ ) [ ) [ )kk aaaaaa ,,,,,, 12110 −K

However, we are going to take a look at “ 2χ  When the Underlying Distribution Is Continuous”. The 

underlying concept is fairly straightforward. Let X denote the variable being sampled and suppose the 

hypothesized probability density function of X is ( )xf 0 . As in the construction of a frequency distribution in 

Chapter 1, subdivide the measurement scale of X into k intervals                                                            . 

(Note that the left-side boundary is closed and the right-side boundary is open.) 
 

The cell probabilities specified by H0 are then ( ) ( )∫
−

=<≤= −

i

i

a

a
iii dxxfaXaPp
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The cell intervals should be chosen so that 50 ≥ipn  for i = 1, 2, … , k to meet our rule-of-thumb criteria. In 

practice, the cells are often selected so that the 0ip ’s, and therefore the 0ipn ’s,  are equal. 
 

We won’t have time to do an Example, so I’ll refer you to the text’s Example 14.4. 
 

The following notes might help: 
 

1) For the 90th percentile (“exactly 90% of all students will finish”), the critical value is z = 1.28. 
 

2) The authors determined σ = 15.63 by replacing µ in “µ + 1.28σ = 120” with its criterion value µ = 100 and 

solving for σ . 
 

3) The eight z-intervals were selected so that each has a probability of 1/8. That is, the probability is uniform for 

each interval, ensuring that the Expected value for each interval will be a uniform 120/8 = 15. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

You should do the calculations for yourself for practice, checking your work against the text’s results.  



 
 

Appendix Table A.7 

Critical Values for Chi-Squared Distributions 

 
 
 

 

 αααα    

νννν    0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005 

1 0.000 0.000 0.001 0.004 0.016 2.706 3.843 5.025 6.637 7.882 

2 0.010 0.020 0.051 0.103 0.211 4.605 5.992 7.378 9.210 10.597 

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.344 12.837 

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860 

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.085 16.748 

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.440 16.812 18.548 

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.012 18.474 20.276 

8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.534 20.090 21.954 

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.022 21.665 23.587 

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188 

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.724 26.755 

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300 

13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.735 27.687 29.817 

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319 

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.577 32.799 

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267 

17 5.697 6.407 7.564 8.682 10.085 24.769 27.587 30.190 33.408 35.716 

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156 

19 6.843 7.632 8.906 10.117 11.651 27.203 30.143 32.852 36.190 38.580 

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997 

21 8.033 8.897 10.283 11.591 13.240 29.615 32.670 35.478 38.930 41.399 

22 8.643 9.542 10.982 12.338 14.042 30.813 33.924 36.781 40.289 42.796 

23 9.260 10.195 11.688 13.090 14.848 32.007 35.172 38.075 41.637 44.179 

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558 

25 10.519 11.523 13.120 14.611 16.473 34.381 37.652 40.646 44.313 46.925 

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290 

27 11.807 12.878 14.573 16.151 18.114 36.741 40.113 43.194 46.962 49.642 

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993 

29 13.120 14.256 16.147 17.708 19.768 39.087 42.557 45.772 49.586 52.333 

30 13.787 14.954 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672 

31 14.457 15.655 17.538 19.280 21.433 41.422 44.985 48.231 52.190 55.000 

32 15.134 16.362 18.291 20.072 22.271 42.585 46.194 49.480 53.486 56.328 

33 15.814 17.073 19.046 20.866 23.110 43.745 47.400 50.724 54.774 57.646 

34 16.501 17.789 19.806 21.664 23.952 44.903 48.602 51.966 56.061 58.964 

35 17.191 18.508 20.569 22.465 24.796 46.059 49.802 53.203 57.340 60.272 

36 17.887 19.233 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581 

37 18.584 19.960 22.105 24.075 26.492 48.363 52.192 55.667 59.891 62.880 

38 19.289 20.691 22.878 24.884 27.343 49.513 53.384 56.896 61.162 64.181 

39 19.994 21.425 23.654 25.695 28.196 50.660 54.572 58.119 62.426 65.473 

40 20.707 22.164 24.433 26.509 29.050 51.805 55.758 59.342 63.691 66.766 

 


