
Stat 401, section 14.2 Goodness of Fit – Composite Hypotheses 
notes by Tim Pilachowski 
 

From Lecture 14.1: A multinomial experiment generalizes a binomial experiment by allowing each trial to 

result in one of k possible outcomes, where k > 2. We referred to the k possible outcomes on any given trial as 

categories, and ip  denoted the probability that a trial results in category i. That is, ip  was interpreted as the 

proportion of the population falling in the i 

th  category. 
 

The null hypothesis of interest specified the value of each pi: 00220110 ,,,: kk ppppppH === K . 

The alternative hypothesis stated that 0H  was not true – that is, that at least one of the pi’s has a value different 

from that asserted by 0H  (implying that at least two must be different, since all of the proportions added 

together must equal 1). 
 

In a multinomial experiment the expected number of trials resulting in category i is 

( ) ii pnNE =    (i = 1, 2, … , k). 

When 00220110 ,,,: kk ppppppH === K  is true, these expected values become 

( ) ( ) ( ) 0022011 ,,, kk pnNEpnNEpnNE === K . 

The test statistic for a multinomial experiment is
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The probability distribution is a chi-squared ( )2χ  distribution which has ν = k – 1 degrees of freedom. The 

critical value, 2

,ναχ , is the value such that α of the area under the 2χ  curve lies to the right of 2

,ναχ . 

 
 

Selected values of ναχ ,
2  are given in Appendix Table A.7. A value of the test statistic which is greater than the 

value of the critical value (calculated 1,
22

−≥ kαχχ )  will imply P-value ≤ α, and we reject the null hypothesis. 
 

The null hypothesis in Lecture 14.1 is a simple hypothesis in the sense that each 0ip  was a specified number, 

so that the expected cell counts when 0H  was true were uniquely determined numbers. Now, in Lecture 14.2, 

we are going to consider one (and only one) application for which each 0ip  is determined by some outside 

parameter: Goodness of Fit for Continuous Distributions, specifically, determining whether a set of data 

indicates that the population has an underlying normal distribution. 
 

If 0H  states that the underlying distribution is normal, use of a 2χ  test must be preceded by a choice of cells 

and estimation of µ and σ. To ensure that the chi-squared test is valid, the cells should be chosen independently 

of the sample observations. Once the cells are chosen, it is almost always quite difficult to estimate unspecified 

parameters (such as µ and σ in the normal case) from the observed cell counts, so instead maximum likelihood 

estimates (see Lecture 6.2) based on the full sample are computed. 
 

Theorem: Let 
mθθθ ˆ,,ˆ,ˆ

21 K  be the maximum likelihood estimators of mθθθ ,,, 21 K  based on the full sample 

nXXX ,,, 21 K , and let 2χ  denote the statistic based on these estimators. Also let =1P  the P-value for an 

upper-tailed chi-squared test based on k – 1 degrees of freedom, and let =2P  the P-value for an upper-tailed 

chi-squared test based on k – 1 – m degrees of freedom. Then it can be shown that ≤1P  P-value ≤ 2P . 
 



For a given significance level α : 1) If 1P≤α , fail to reject 0H ; If 2P≥α , reject 0H ; If P 1  < α < P 2, withhold 

judgement. 
 

We’re going to illustrate the process by Example. 
 

Example A: The SAT is designed so that the observed scores will have normal distribution. Do the 162 scores 

listed below support this hypothesis? (α = 0.05) 
 

800 800 790 780 760 760 760 760 750 740 740 740 740 740 740 

730 720 720 720 720 720 710 710 710 700 700 700 700 700 700 

700 700 700 700 700 690 690 690 690 690 690 690 690 680 680 

680 680 680 680 680 680 670 670 670 670 660 660 660 650 650 

650 650 650 650 650 650 650 650 640 640 640 640 640 640 640 

640 640 640 630 630 630 630 630 630 630 630 620 620 620 620 

610 610 610 610 600 600 600 600 590 590 590 580 580 580 570 

570 570 570 570 570 570 570 560 560 560 560 560 560 550 550 

550 540 540 540 540 540 540 540 530 530 530 530 530 530 520 

520 520 520 510 510 500 500 490 490 480 470 460 450 440 440 

430 430 420 410 410 410 410 400 400 390 390 360 
 

hypotheses: 

 

 

 

Prior to sampling, it is presumed that the population mean µ is 600 with standard deviation σ of 100.  
 

As noted at the end of Lecture 14.1b, the eight z-intervals (– ∞, – 1.15), [– 1.15, – 0.675), [– 0.675, – 0.32), 

[– 0.32, 0), [0, 0.32), [0.32, 0.675), [0.675, 1.15) and [1.15, ∞) have a probability of 1/8 each, i.e. the probability 

is uniform for each interval. 
 

For µ = 600 and σ = 100, these intervals transform to X boundaries, (Fill in “Cell” column below.) 

 

 

 

 

 

 

 

The observed counts are …    (Fill in “Observed” column below.) 

 

 

Next step: We need to transform these X boundaries into estimated (expected) cell probabilities, ( )σµπ ˆ,ˆ
i , using 

the maximum likelihood estimates σµ ˆandˆ . Back in Lecture 6.2, we derived formulas for both of these. 

 

 

 

 

 

Last step before calculating the 2χ  statistic: computing estimated expected cell counts, ( )σµπ ˆ,ˆ
in ∗ . 

(Fill in “Estimated Expected” column below.) 
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IMPORTANT: The symbol 2χ  is a notation! Do not square the sum in the last column. 
 

critical values: 

 

 

 

conclusion: 

  


