Due Tuesday, November 11, 2008.

(1) Consider the two following two planes P_1 and P_2 and the two points O and p:

\[
O := \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}
\]
\[
p = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}
\]
\[
P_1 = \{x + y + z = 1\}
\]
\[
P_2 = \{x - y - z = 0\}.
\]

Find the points on P_1 and P_2 closest to O and p respectively.

(2) Suppose that P_1 and P_2 are planes defined implicitly by row vectors ρ_1 and ρ_2 respectively: that is

\[
\rho_i := [a_i b_i c_i - d_i]
\]

corresponds to the plane $a_i x + b_i y + c_i z = d_i$, using the vector

\[
\vec{v} := \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}, \quad \rho \vec{v} = 0.
\]

(a) Write a computer program for determining whether P_1 and P_2 intersect (in terms of ρ_i) and computing their line of intersection.

(b) Write a computer program for parametrizing P_i explicitly

\[
\vec{p}_i(s, t) := \vec{u}_i + s\vec{v}_i + t\vec{w}_i
\]

for $s, t \in \mathbb{R}$.

(c) Write a computer program for computing the perspective mapping from P_1 to P_2.

\[\text{Date: November 5, 2008.} \]
(3) Consider the one-sheeted hyperboloid
\[\mathcal{H} := \{x^2 + y^2 = z^2 + 1\}. \]

(a) Find all the lines on \(\mathcal{H} \).

(b) Show that the lines fall into two families \(L_1 \) and \(L_2 \) such that any two lines in the same \(L_i \) are skew and any pair of lines, one from \(L_1 \), and one from \(L_2 \), intersect.

(c) If \(\ell \) is a line defined parametrically as
\[\vec{p} + \mathbb{R}\vec{v} \]
and \(R_\theta \) is the rotation through angle \(\theta \) about the \(z \)-axis, describe the line \(R_\theta(\ell) \).

(d) Generate \(\mathcal{H} \) by revolving a line around the \(z \)-axis \(x = y = 0 \).

(e) Illustrate these ideas with a computer program.