Given a point p, denote the reflection in the point p by R_p. Consider the following three points.

\[
O := \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \\
p_1 = \begin{bmatrix} -4 \\ 3 \end{bmatrix}, \\
p_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}
\]

(1) Compute the five points:

\[R_O(O), R_O(p_1), R_{p_1}(O), R_{p_2}(p_1), R_{p_2}(p_2).\]

Using the last calculation, verify that R_O and R_{p_1} do not commute:

\[R_O(R_{p_1}(p)) \neq R_{p_1}(R_O(p))\]

for some point p.

(2) Let S_O be the rotation through $\pi/2$ about O and S_{p_1} be the rotation through $\pi/2$ about p_1. Their composition $S_{p_1} \circ S_O$ is a rotation through some angle θ about some point p. Compute θ and p.

(3) Compute the line ℓ passing through p_1 and p_2.

(4) Compute the reflection R_ℓ in ℓ.

(5) What kind of transformation is the composition $R_\ell \circ S_O$?

(6) Let ℓ be the line in \mathbb{C} defined by $\text{Re}(fz) = c$, where $f \in \mathbb{C} \setminus \{0\}$ is a nonzero complex number and $c \in \mathbb{R}$ is a real number. Compute the reflection in ℓ.

(7) A glide-reflection is an isometry of \mathbb{C} which preserves a geodesic, ℓ, but reverses orientation. Write a glide-reflection as a complex transformation in terms of ℓ and the distance d (its displacement) along which it translates ℓ.

(8) Show that the composition $R_\ell \circ R_O$ is a glide-reflection and determines its invariant line and its displacement.

Date: November 5, 2008.