NONSTANDARD LORENTZ SPACE FORMS

WILLIAM M. GODMAN

In their recent paper [8], Kulharni and Raymond show that a closed 3-manifold which admits a complete Lorentz metric of constant curvature 1 (henceforth called a complete Lorentz structure) must be Seifert fibered over a hyperbolic base. Furthermore on every such Seifert fibered 3-manifold with nonzero Euler class they construct such a Lorentz metric. Moreover the Lorentz structure they construct has a rather strong additional property, which they call “standard”: A Lorentz structure is standard if its causal double cover possesses a timelike Killing vector field. Equivalently, it possesses a Riemannian metric locally isometric to a left-invariant metric on SL(2, R). Kulkarni and Raymond asked if every closed 3-dimensional Lorentz structure is standard. This paper provides a negative answer to this question (Theorem 1) and a positive answer to the implicit question raised in [8, 7.1.1] (Theorem 3).

Theorem 1. Let \(M^3 \) be a closed 3-manifold which admits a homogeneous Lorentz structure and satisfies \(H^1(M; \mathbb{R}) \neq 0 \). Then there exists a nonstandard complete Lorentz structure on \(M \).

In [8] it is shown that the unit tangent bundle of a closed surface admits a homogeneous Lorentz structure. Therefore we obtain:

Corollary 2. There exists a complete Lorentz structure on the unit tangent bundle of any closed surface \(F \) of genus greater than one which is not standard.

The homogeneous Lorentz structures are all classified in [8]. A circle bundle of Euler number \(j \) over a closed surface \(F, \chi(F) < 0 \), has a homogeneous structure if and only if \(j|\chi(F) \) (an analogous statement holds when \(M \) has singular fibers, i.e. when \(F \) is an orbifold).

We also show:

Theorem 3. Let \(M^3 \) be a 3-manifold which admits a complete Lorentz structure. Then \(M^3 \) is not covered by a product \(F \times S^1 \), \(F \) a closed surface.

Theorem 3 implies that the Euler class of the Seifert fiber structure of \(M^3 \) is nonzero.
Corollary 4. If a closed 3-manifold M admits a complete Lorentz structure, then M admits a standard Lorentz structure.

In [7] the deformation theory of standard Lorentz structures is extensively discussed.

A key idea in the proof of Theorem 1 is the notion of a (small) deformation of a complete Lorentz structure. It is convenient to think of a Lorentz structure as a “locally homogeneous” geometric structure, defined by an atlas of charts which are homeomorphisms of coordinate patches into a model space X such that the coordinate changes on the overlaps lie in a certain group G of transformations of X. (See [12].) In our case X will be a simply connected complete Lorentz manifold of curvature 1 and G will be the identity component of its group of Lorentz isometries. A convenient model for X is the universal cover $\widetilde{\text{SL}}(2, \mathbb{R})$ of $\text{SL}(2, \mathbb{R})$, with the Lorentz metric defined by the Killing form on the Lie algebra $\mathfrak{sl}(2, \mathbb{R})$. The group of all its isometries is a 4-fold extension of the quotient of $\widetilde{\text{SL}}(2, \mathbb{R}) \times \widetilde{\text{SL}}(2, \mathbb{R})$ by a diagonally embedded central \mathbb{Z}. See [8] for further details on the resulting geometry.

One basic example of such a structure arises as follows. Consider any discrete cocompact subgroup Γ of $\text{PSL}(2, \mathbb{R})$. Then the quotient $\text{PSL}(2, \mathbb{R})/\Gamma$ has an induced left-invariant complete Lorentz structure. Such manifolds have homogeneous Lorentz metrics (cf. Kulkarni-Raymond [8, 10]). If Γ is torsionfree, so that $\text{PSO}(2) \backslash \text{PSL}(2, \mathbb{R})/\Gamma$ is a smooth hyperbolic surface F, then $\text{PSL}(2, \mathbb{R})/\Gamma$ is the unit tangent bundle of F. By taking fiberwise coverings, we obtain homogeneous complete Lorentz structures on other oriented circle bundles over F; these circle bundles are characterized by the property that their Euler class divides $\chi(F)$. The class of Seifert fibered 3-manifolds which can be obtained as coverings of such quotients of $\text{PSL}(2, \mathbb{R})$ are precisely the Seifert fibered 3-manifolds which admit homogeneous Lorentz structures. The nonstandard complete Lorentz structures constructed here will be deformations of these homogeneous structures.

A geometric structure modelled on the geometry of (G, X) is sometimes called a “(G, X)-structure”. To every (G, X)-structure on a manifold M there are associated homomorphisms h from the fundamental group $\pi = \pi_1(M)$ to G such that for each “holonomy homomorphism” h there exists a local diffeomorphism (called the “developing map”) from the universal covering \tilde{M} of M to X which is equivariant respecting h. (For a given (G, X)-structure, the holonomy homomorphism and the developing map are respectively unique up to conjugation and composition with a transformation in G.) If G is a group of isometries of a pseudo-Riemannian metric on X, then there is a unique pseudo-Riemannian metric on M such that the developing map is a local
isometry of the induced structure on \tilde{M} with X. In the language of [8], a
manifold with a complete Lorentz structure is a “Lorentz space form”.

A (G, X)-structure is said to be complete if its developing map is a covering
map onto X. We will always take X to be a simply connected homogeneous
space of G, so that the developing map will represent a complete (G, X)-
manifold as a quotient of X by a discrete subgroup of G acting properly and
freely. When X has a complete G-invariant pseudo-Riemannian metric, com-
pleteness of a (G, X)-structure is equivalent to the usual notion of geodesic
completeness of the corresponding pseudo-Riemannian metric. However, un-
less G acts properly on X no general criterion for a (G, X)-structure on a
closed manifold to be complete is known. (Indeed there are many well-known
geometries (G, X) (such as affine geometry) for which incomplete (G, X)-
structures exist on closed manifolds, see e.g. [11].) It is not known whether a
Lorentz structure on a closed manifold is necessarily complete.

A Lorentz structure is standard if it (or perhaps a double cover of it)
possesses a timelike Killing vector field ξ. In terms of (G, X)-structures a
standard complete Lorentz structure is a (G, Λ_Γ)-structure whose “holonomy
group” $h(\pi)$ normalizes the isometric flow generated by ξ. Alternatively we say
that a standard Lorentz structure is a (G_0, X)-structure, where G_0 is the
normalizer of ξ. Every homogeneous Lorentz structure on a closed manifold is
complete (since G_0 acts properly on X, standard implies complete for closed
manifolds).

The space of homomorphisms $\pi \to G$ forms a real analytic variety
$\text{Hom}(\pi, G)$. Suppose M is a closed manifold with a (G, X)-structure (denoted
M_0) with holonomy homomorphism $h_0: \pi \to G$. Then there exists a neighbor-
hood U of h_0 in $\text{Hom}(\pi, G)$ such that for each $h_t \in U$, there is a (G, X)-
structure M_t with holonomy h_t. (In this generality, this fact was first observed
by Thurston [12]; See Lok [9] for a detailed discussion.) (Indeed, it is possible
to define a deformation space of (G, X)-structures with a natural topology in
such a way that the (G, X)-structures M_t form a continuous family near M_0.)

Let M be a 3-manifold which admits a homogeneous Lorentz structure, e.g.
the unit tangent bundle of a closed surface F. Let h_0 be the holonomy
representation $\pi \to \widetilde{\text{SL}}(2, \mathbb{R})$ corresponding to one of the homogeneous Lorentz
structures above. Let B be a one-parameter subgroup in $\text{SL}(2, \mathbb{R})$ acting by
right-multiplication on $\widetilde{\text{SL}}(2, \mathbb{R})$. We shall deform the homomorphism $h_0 \in
\text{Hom}(\pi, G)$ using a deformation of the trivial representation in $\text{Hom}(\pi, B)$.

For $v \in \text{Hom}(\pi, B)$ in a sufficiently small neighborhood of the trivial
homomorphism, the homomorphism $(h_0, v): \pi \to \text{Hom}(\pi, G)$ (where h_0 acts
on the left and v acts on the right) will be the holonomy representation of a
complete Lorentz structure near the homogeneous structure on M. In other words:

Proposition 5. Let $h_0: \pi \to \widetilde{SL}(2, \mathbb{R})$ be the holonomy of a homogeneous complete Lorentz structure as above. Then there exists a neighborhood U of the trivial representation 0 in $\text{Hom}(\pi, B)$ such that for all $v \in U$, (h_0, v) is a free proper action of π on X with quotient a closed manifold.

When B is either a hyperbolic or parabolic one-parameter subgroup, then the resulting quotient manifold has a nonstandard complete Lorentz structure. Thus Proposition 5 implies Theorem 1. Observe that we obtain two quite different families of nonstandard complete Lorentz structures, depending on whether B is parabolic (lightlike) or hyperbolic (spacelike). By small deformations of the holonomy, we construct "nearby" Lorentz structures with the deformed holonomy. Proposition 5 is proved by showing this deformed structure is complete.

We begin by describing one viewpoint on (G, X)-structures in which the existence of deformed (G, X)-structures is quite transparent. Let $\text{dev}: \tilde{M} \to X$ be a developing map which is equivariant with respect to a homomorphism $h \in \text{Hom}(\pi, G)$. The equivariance of dev with respect to h implies that the graph of dev is a section of the trivial X-bundle $\tilde{M} \times X$ over \tilde{M} which is invariant under the action of π on $\tilde{M} \times X$ defined by $\gamma: (u, x) \mapsto (\gamma u, h(\gamma)x)$. It follows that the graph of dev defines a section (the "developing section") f of the (G, X)-bundle $X(h)$ whose total space is the quotient $(\tilde{M} \times X)/\pi$.

The bundle $X(h)$ has a flat structure, i.e. a foliation transverse to the fibers. The leaves of this foliation are the images of the sets $\tilde{M} \times \{x_0\}$, where $x_0 \in X$. The nonsingularity of the developing map is equivalent to the transversality of f to the flat structure. Conversely, any section of a flat (G, X)-bundle which is transverse to the flat structure defines a (G, X)-structure: local charts for this structure are found by composing the submersive local charts of the foliation with the section. In this way every transverse section of the flat (G, X)-bundle $X(h)$ is a "developing section" of a (G, X)-structure with holonomy h. For more details on this picture of (G, X)-structures, the reader is referred to Goldman [3], Goldman-Hirsch [5], Kulkarni [6], or Sullivan-Thurston [11].

We can now understand the deformation theorem as follows. Fix a (G, X)-structure on M as well as a holonomy homomorphism h_0, developing section f_0 of $X(h_0)$, etc. We will prove that there is a neighborhood W of h_0 in $\text{Hom}(\pi, G)$ such that every $h \in W$ is the holonomy of a "nearby" (G, X)-structure. First choose a contractible neighborhood W' of h_0 in $\text{Hom}(\pi, G)$. Then there is a natural (G, X)-bundle over $\tilde{M} \times W'$ whose total space is the
quotient of $\tilde{M} \times W' \times X$ by the action of π given by $\gamma: (u, h, x) \mapsto (\gamma u, h, h(\gamma)x)$. The covering homotopy property implies that this bundle is equivalent to the product $X(h_0) \times W'$, as an X-bundle. Fix a smooth trivialization of this bundle over W'. The foliation defining the flat structure on $X(h)$ varies continuously with respect to h in the C^1 topology. Using the trivialization over W', we find a smooth section f' of this bundle over M extending f_0. Since f_0 is transverse to the flat structure it follows that the restriction f_i of f' to $M \times \{h_i\}$ is also transverse, at least for h_i in a neighborhood W of h_0 in W. Thus for each $h_i \in W$ there is a (G, X)-structure with holonomy h_i. We shall refer to the new structures with holonomy h_i as structures “nearby” the original structure with holonomy h_0.

We shall need an elementary property of this construction:

Lemma 6. Suppose that M_0 is a closed (G, X)-manifold whose holonomy homomorphism h centralizes a connected subgroup H of G which acts properly and freely on X. Consider deformations M_i of M_0 induced as above by deformations h of h_0 which have the form $h_0(\gamma) = h(\gamma)p_0(\gamma)$, where p_0 is a deformation of the trivial representation in $\text{Hom}(\pi, H)$. Let dev denote the corresponding developing maps of M_i, and let p_H denote the projection map $X \to X/H$. Then, as h varies, the composite map $p_H \circ \text{dev}$ remains constant. In particular, if M_0 is complete, then $p_H \circ \text{dev}$ is a fibration with fibers the orbits of the corresponding local H-action.

Proof of Lemma 6. The actions of π on the quotient X/H defined by h_i are all equal. The family of associated flat X/H-bundles $(X/H)(h_i)$ over M is a bundle over W. Since W is contractible, this bundle is trivial. Furthermore there exists a trivialization over W of the family $X(h_i)$ of X-bundles over M which extends the trivialization of the associated flat X/H-bundles $(X/H)(h_i)$. Let p_i denote the bundle map $X(h_i) \to (X/H)(h_i)$ which on each fiber is given by the projection map $p_H: X \to X/H$. With respect to the trivialization the developing sections, f_i are all equal. Thus $p_i \circ f_i$ is constant in the t-parameter. Passing to the universal covering \tilde{M} we see that $p_H \circ \text{dev}$ is constant as well. q.e.d.

Proof of Proposition 5. Let M_0 be the (G, X)-manifold $X/h_0(\pi)$. Let U be a neighborhood of 0 in $\text{Hom}(\pi, B)$ such that for each $v \in U$, every (h_0, v) is the holonomy of a nearby (G, X)-manifold M_v. We shall show that M_v is complete.

Let $\text{dev}: \tilde{M} \to X$ denote the developing map of M_v. We must show that dev is bijective. By the lemma, the composition $p_B \circ \text{dev}: \tilde{M} \to X/B$ is equivalent to the composition of p_B with the developing map of M_0 and hence is a fibration. Let β_X be the Killing vector field on X which generates the action of
B. Let β_M be the Killing vector field on M which corresponds to β_X, i.e. $p^*(\beta_M) = \text{dev}^*(\beta_X)$, where $p : \tilde{M} \to M$ is the covering projection. Since M is compact, the vector field β_M is complete and hence $p^*(\beta_M)$ is also complete. Let $\{\phi_s\}_{s \in \mathbb{R}}$ be the flow on M generated by $p^*(\beta_M)$ and $\{\psi_s\}_{s \in \mathbb{R}}$ the flow on X generated by β_X. Clearly $\text{dev} \circ \phi_s = \psi_s \circ \text{dev}$.

dev is surjective: Let $v \in X$. Since $p_B \circ \text{dev}$ is surjective, there exists $u \in \tilde{M}$ such that $p_B(\text{dev}(u)) = p_B(v)$. Since the fibers of p_B are the orbits of B (i.e. the trajectories of $p^*(\beta_M)$), there exists $s \in \mathbb{R}$ such that $\phi_s(\text{dev}(u)) = v$. It follows that $\text{dev}(\psi_s(u)) = v$, as desired.

dev is injective: Suppose that $u_0, u_1 \in M$ satisfy $\text{dev}(u_0) = \text{dev}(u_1)$. Since $p_B \circ \text{dev}$ is a fibration with fibers the trajectories of $p^*(\beta_X)$, there exists $s \in \mathbb{R}$ such that $\phi_s(u_0) = u_1$. Thus $\psi_s(\text{dev}(u_0)) = \text{dev}(u_1) = \text{dev}(u_0)$. As B acts freely on X, it follows that $s = 0$, and $u_0 = u_1$. Thus dev is bijective and M is complete. q.e.d.

Remarks. (i) It seems plausible to conjecture that for every representation $\nu \in \text{Hom}(\pi, \text{SL}(2, \mathbb{R}))$ sufficiently near a standard representation, the homomorphism (Λ^0, ι) defines a properly discontinuous free action on X. It would also be interesting to know explicitly, for given h_0, which $\nu \in \text{Hom}(\pi, B)$ define properly discontinuous actions.

(ii) By taking B to be a parabolic one-parameter group, we note that the deformation space for complete Lorentz structures is not Hausdorff. Let (h_0, ν) be a holonomy homomorphism for a nonstandard complete Lorentz structure as above, where $\nu : \pi \to B$. Let N be a hyperbolic one-parameter subgroup normalizing B; then the orbit of (h_0, ν) under conjugation by N on the second factor contains the original homomorphism $(h_0, 1)$ in its closure. Thus the space of equivalence classes of holonomy representations, and hence the deformation space of complete (G, X)-structures, is not Hausdorff.

(iii) In a similar way, when B is parabolic every homomorphism $\nu : \pi \to B$ is realized as the second component of the holonomy of a nonstandard Lorentz structure on M. For the deformation arguments above realize an open neighborhood U of 1 in $\text{Hom}(\pi, B)$ and every homomorphism $\pi \to B$ is N-conjugate to one in U.

Proof of Theorem 3. Let M be a closed 3-manifold which is a product $F \times S^1$, where S is a closed surface and $\chi(F) < 0$. By [8] the holonomy representation $h : \pi \to G$ composed with the projection

$$p' : G \to G' = G/\text{center}(G) = \text{PSL}(2, \mathbb{R}) \times \text{PSL}(2, \mathbb{R})$$

is of the form (h_1, h_2), where either h_1 or h_2 is a Fuchsian representation. We may assume that h_1 is Fuchsian. Suppose the genus of F is g and that
\[\langle A_1, B_1, \ldots, A_g, B_g \mid [A_1, B_1] \cdots [A_g, B_g] = I \rangle \] is the standard presentation for \(\pi' = \pi_1(F) = \pi/\text{center}(\pi) \). (Compare [8, 7.1.1].) Let \(\mu \) be the element of \(\pi \) corresponding to the fiber; since \(\mu \) is central in \(\pi \),
\[h_1(\mu) \] centralizes \(h_1(\pi) \) and \(h_2(\mu) \) centralizes \(h_2(\pi) \). Since \(h_1(\pi) \) is Fuchsian, \(h_1(\pi) \) must lie in the center of \(\text{PSL}(2, \mathbb{R}) \), i.e. \(h_1(\mu) = 1 \). If \(h_2(\pi) \) is non-abelian, then its centralizer is trivial and \(h_2(\pi) = 1 \). Otherwise \(h_2(\pi) \) is abelian, in which case some power of \(h_2(\mu) \) (which is a product of commutators in \(h_2(\pi) \)), is the identity element of \(\text{PSL}(2, \mathbb{R}) \). Thus some power of \(h(\mu) \) must lie in the center of \(G \). By passing to a finite covering of \(M \) we may assume that \(h(\mu) = 1 \) and that \(h \) factors through a homomorphism \(\pi' \rightarrow G \). Let \(h'_1 \) and \(h'_2 \) be the two components of the composition \(p' \circ h' : \pi \rightarrow \text{PSL}(2, \mathbb{R}) \times \text{PSL}(2, \mathbb{R}) \).

Now consider lifts \(h(A_i) \) of \(h(A_i) \) (respectively \(h(B_i) \) of \(h(B_i) \)) to the universal covering \(G = \text{SL}(2, \mathbb{R}) \times \text{SL}(2, \mathbb{R}) \) of \(G \). Let \(S = [h(A_1), h(B_1)] \cdots [h(A_g), h(B_g)] \). Since \(h_1 \) is Fuchsian, the projection of \(s \) on the first factor must be \(z^{2-2g} \). Since \(h \) factors through \(\pi' \), the projection of \(s \) on the second factor of this element is also \(z^{2-2g} \). Thus the Euler class of each representation \(h'_1, h'_2 \) equals \(2 - 2g \). (Compare the proof of Theorem 7.2 in [8], as well as 7.1.1.) We claim that this implies that the Lorentz volume of \(M \) is zero. For the \(G \)-invariant volume form on \(X \) determines a continuous 3-dimensional cohomology class \(\omega \in H^3(BG^\delta) \) such that if \(f : M \rightarrow BG^\delta \) is the classifying map of the flat \(G \)-structure on the tangent bundle, then \(f^*\omega = \text{vol}(M)[M] \). (Here \(G^\delta \) denotes \(G \) with the discrete topology. See [1], [2], [3] and [4] for more information on such classes.) Now the continuous cohomology of \(G \) can easily be computed from the extensions \(Z \rightarrow \tilde{G} \rightarrow G \) and \(Z \rightarrow G \rightarrow \text{PSL}(2, \mathbb{R}) \times \text{PSL}(2, \mathbb{R}) \), in terms of the continuous cohomology of \(\text{PSL}(2, \mathbb{R}) \) and its universal cover \(\text{SL}(2, \mathbb{R}) \). The continuous cohomology of \(\text{PSL}(2, \mathbb{R}) \) has one generator \(a \) in dimension 2 corresponding to the Euler class, and the continuous cohomology of \(\text{SL}(2, \mathbb{R}) \) has one generator \(b \) in dimension 3 corresponding to its bi-invariant volume form. If \(Z \rightarrow S \rightarrow T \) is an extension of groups there is an exact Gysin sequence

\[\cdots \rightarrow H^i(T) \rightarrow H^i(S) \rightarrow H^{i+2}(S) \rightarrow H^{i+1}(T) \rightarrow \cdots \]

(all the \(H^i \) denoting continuous cohomology), where the first map \(H^i(T) \rightarrow H^i(S) \) is induced from the homomorphism \(S \rightarrow T \) and the second map \(H^i(S) \rightarrow H^{i+2}(S) \) is given by cup product with the characteristic class in \(H^2(S) \) corresponding to the extension \(Z \rightarrow S \rightarrow T \). In the Gysin sequence for
the extension $\mathbb{Z} \to \widetilde{SL}(2, \mathbb{R}) \to PSL(2, \mathbb{R})$ the generator of $H^3(\widetilde{SL}(2, \mathbb{R}))$ corresponding to the invariant volume form maps to the class in $H^2(PSL(2, \mathbb{R}))$ corresponding to the Euler class [2].

Now let $j: \tilde{G} \to \hat{G}$ be the involution given by $(x, y) \to (y, x)$; on X, j is represented by an orientation-reversing Lorentz isometry (thinking of X as $\widetilde{SL}(2, \mathbb{R})$, this isometry is just $x \to x^{-1}$). Let b_1, b_2 be the generators of the continuous cohomology of G coming from the volume forms on each factor. Because j preserves the image of $Z \to G$ and takes the class $\omega \in H^3(G)$ corresponding to Lorentz volume to $-\omega$, we see that the image of ω under $H^3(G) \to H^3(\hat{G})$ is $b_1 - b_2$.

Now consider the extension $Z \to G \to PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$. One sees that the image of $\omega \in H^3(G)$ under the map $H^3(G) \to H^2(PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R}))$ is the class $a_1 - a_2$. It follows that the volume $\omega(h)$ is given (up to a normalizing constant) by the difference of the Euler classes $e(h_1) - e(h_2)$. Thus if $e(h_1) = e(h_2)$, then $\text{vol}(M) = \omega(h) = 0$.

Acknowledgements. I am grateful to R. Brooks, D. Fried, R. Kulkarni, W. Neumann, and F. Raymond for helpful discussions.

References

MASSACHUSETTS INSTITUTE OF TECHNOLOGY