3-dimensional affine space forms and hyperbolic geometry

William M. Goldman

Department of Mathematics University of Maryland

23 April 2010
Mathematics Department Colloquium
University of Illinois, Chicago
When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n / G$ a (Hausdorff) manifold?

- G acts by Euclidean isometries $\implies G$ finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);

- A Euclidean isometry is an affine transformation

$$\bar{x} \stackrel{\gamma}{\mapsto} A\bar{x} + \vec{b}$$

$A \in \text{GL}(n, \mathbb{R}), \vec{b} \in \mathbb{R}^n,$

where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. ($A \in \text{O}(n)$)

- Only finitely many topological types in each dimension.
- Only one commensurability class.
Euclidean manifolds

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
 - G acts by Euclidean isometries $\implies G$ finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
 - A Euclidean isometry is an affine transformation
 \[x \mapsto A\vec{x} + \vec{b} \]
 \[A \in \text{GL}(n, \mathbb{R}), \vec{b} \in \mathbb{R}^n, \]
 where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. ($A \in \text{O}(n)$)

- Only finitely many topological types in each dimension.
- Only one commensurability class.
Euclidean manifolds

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n / G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries $\implies G$ finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
- A Euclidean isometry is an affine transformation

$$\vec{x} \xrightarrow{\gamma} A \vec{x} + \vec{b}$$

$A \in \text{GL}(n, \mathbb{R}), \vec{b} \in \mathbb{R}^n,$

where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. ($A \in \text{O}(n)$)
- Only finitely many topological types in each dimension.
- Only one commensurability class.
Euclidean manifolds

When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?

G acts by Euclidean isometries $\Rightarrow G$ finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);

A Euclidean isometry is an affine transformation

$$\vec{x} \xrightarrow{\gamma} A\vec{x} + \vec{b}$$

$$A \in \text{GL}(n, \mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

where the linear part $L(\gamma) = A$ is orthogonal. ($A \in \text{O}(n)$)

Only finitely many topological types in each dimension.

Only one commensurability class.
Euclidean manifolds

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries \Rightarrow G finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
- A Euclidean isometry is an affine transformation
 $$\vec{x} \xrightarrow{\gamma} A\vec{x} + \vec{b}$$
 $$A \in \text{GL}(n, \mathbb{R}), \vec{b} \in \mathbb{R}^n,$$
 where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. ($A \in \text{O}(n))$
- Only finitely many topological types in each dimension.
- Only one commensurability class.
Euclidean manifolds

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries $\implies G$ finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
- A Euclidean isometry is an affine transformation

$$x \xrightarrow{\gamma} A x + b$$

$A \in \text{GL}(n, \mathbb{R}), b \in \mathbb{R}^n$, where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. ($A \in \text{O}(n)$)
- Only finitely many topological types in each dimension.
- Only one commensurability class.
Euclidean manifolds

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n / G$ a (Hausdorff) manifold?

- G acts by Euclidean isometries $\implies G$ finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);

- A Euclidean isometry is an affine transformation

$$\vec{x} \overset{\gamma}{\mapsto} A\vec{x} + \vec{b}$$

$$A \in \text{GL}(n, \mathbb{R}), \vec{b} \in \mathbb{R}^n,$$

where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. ($A \in \text{O}(n)$)

- Only finitely many topological types in each dimension.

- Only one commensurability class.
When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?

G acts by Euclidean isometries $\implies G$ finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);

A Euclidean isometry is an affine transformation

$$\vec{x} \xrightarrow{\gamma} A\vec{x} + \vec{b}$$

$A \in \text{GL}(n, \mathbb{R}), \vec{b} \in \mathbb{R}^n,$

where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. $(A \in \text{O}(n))$

Only finitely many topological types in each dimension.

Only one commensurability class.
Euclidean manifolds

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n / G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries $\implies G$ finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
- A Euclidean isometry is an affine transformation
 \[\bar{x} \overset{\gamma}{\mapsto} A\bar{x} + \bar{b} \]
 \[A \in \text{GL}(n, \mathbb{R}), \bar{b} \in \mathbb{R}^n, \]
 where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. ($A \in \text{O}(n)$)
- Only finitely many topological types in each dimension.
- Only one commensurability class.
Euclidean manifolds

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n/G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries $\implies G$ finite extension of a subgroup of translations $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
- A Euclidean isometry is an affine transformation
 \[\vec{x} \mapsto A\vec{x} + \vec{b} \]
 \[A \in \text{GL}(n, \mathbb{R}), \vec{b} \in \mathbb{R}^n, \]
 where the linear part $\mathbb{L}(\gamma) = A$ is orthogonal. ($A \in \text{O}(n)$)
- Only finitely many topological types in each dimension.
- Only one commensurability class.
Euclidean manifolds

- When can a group G act on \mathbb{R}^n with quotient $M^n = \mathbb{R}^n / G$ a (Hausdorff) manifold?
- G acts by Euclidean isometries $\implies G$ finite extension of a subgroup of *translations* $G \cap \mathbb{R}^n \cong \mathbb{Z}^k$ (Bieberbach 1912);
- A Euclidean isometry is an *affine transformation*
 \[
 \vec{x} \xrightarrow{\gamma} A\vec{x} + \vec{b}
 \]

 \[
 A \in \text{GL}(n, \mathbb{R}), \vec{b} \in \mathbb{R}^n,
 \]
 where the linear part $\mathbb{L}(\gamma) = A$ is *orthogonal*. ($A \in \text{O}(n)$)
- Only finitely many topological types in each dimension.
- Only one *commensurability* class.
A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.

For M to be a (Hausdorff) smooth manifold, G must act:
- Discretely: ($G \subset \text{Homeo}(\mathbb{R}^n)$ discrete);
- Freely: (No fixed points);
- Properly: (Go to ∞ in $G \implies$ go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \to X \times X$$

$$(g, x) \mapsto (gx, x)$$

is a proper map (preimages of compacta are compact).

Unlike Riemannian isometries, discreteness does not imply properness.

Equivalently this structure is a geodesically complete torsionfree affine connection on M.
Complete affine manifolds

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.

- For M to be a (Hausdorff) smooth manifold, G must act:
 - Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete})$;
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \implies$ go to ∞ in every orbit Gx).
 - More precisely, the map
 \[
 G \times X \longrightarrow X \times X
 \]
 \[
 (g, x) \longmapsto (gx, x)
 \]
 is a proper map (preimages of compacta are compact).

- Unlike Riemannian isometries, discreteness does not imply properness.

- Equivalently this structure is a geodesically complete torsionfree affine connection on M.
Complete affine manifolds

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For M to be a (Hausdorff) smooth manifold, G must act:
 - Discretely: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete})$;
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \implies$ go to ∞ in every orbit Gx).

 More precisely, the map

 \[
 G \times X \longrightarrow X \times X \\
 (g, x) \longmapsto (gx, x)
 \]

 is a proper map (preimages of compacta are compact).
 - Unlike Riemannian isometries, discreteness does not imply properness.

- Equivalently this structure is a geodesically complete torsionfree affine connection on M.

A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.

For M to be a (Hausdorff) smooth manifold, G must act:

- **Discretely**: $G \subset \text{Homeo}(\mathbb{R}^n)$ discrete;
- **Freely**: (No fixed points);
- **Properly**: (Go to ∞ in G \implies go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \longrightarrow X \times X$$

$$(g, x) \longmapsto (gx, x)$$

is a proper map (preimages of compacta are compact).

Unlike Riemannian isometries, discreteness does not imply properness.

Equivalently this structure is a geodesically complete torsionfree affine connection on M.
A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.

For M to be a (Hausdorff) smooth manifold, G must act:

- **Discretely**: $(G \subset \text{Homeo}(\mathbb{R}^n) \text{ discrete})$;
- **Freely**: (No fixed points);
- **Properly**: (Go to ∞ in $G \implies$ go to ∞ in every orbit Gx).

More precisely, the map

$$G \times X \longrightarrow X \times X$$

$$(g, x) \longmapsto (gx, x)$$

is a proper map (preimages of compacta are compact).

Unlike Riemannian isometries, discreteness does not imply properness.

Equivalently this structure is a geodesically complete torsionfree affine connection on M.
Complete affine manifolds

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For M to be a (Hausdorff) smooth manifold, G must act:
 - Discretely: ($G \subset \text{Homeo}(\mathbb{R}^n)$ discrete);
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \Rightarrow$ go to ∞ in every orbit Gx).
 - More precisely, the map
 $$G \times X \longrightarrow X \times X$$
 $$(g, x) \longmapsto (gx, x)$$
 is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.
- Equivalently this structure is a geodesically complete torsionfree affine connection on M.
Complete affine manifolds

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For M to be a (Hausdorff) smooth manifold, G must act:
 - Discretely: ($G \subset \text{Homeo}(\mathbb{R}^n)$ discrete);
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \implies$ go to ∞ in every orbit Gx).

 More precisely, the map

 $$G \times X \longrightarrow X \times X$$

 $$(g, x) \longmapsto (gx, x)$$

 is a proper map (preimages of compacta are compact).

- Unlike Riemannian isometries, discreteness does not imply properness.

- Equivalently this structure is a geodesically complete torsionfree affine connection on M.

Complete affine manifolds

- A complete affine manifold M^n is a quotient \mathbb{R}^n/G where G is a discrete group of affine transformations.
- For M to be a (Hausdorff) smooth manifold, G must act:
 - Discretely: ($G \subset \text{Homeo}(\mathbb{R}^n)$ discrete);
 - Freely: (No fixed points);
 - Properly: (Go to ∞ in $G \implies$ go to ∞ in every orbit Gx).
 - More precisely, the map
 $$ G \times X \longrightarrow X \times X $$
 $$ (g, x) \longmapsto (gx, x) $$
 is a proper map (preimages of compacta are compact).
- Unlike Riemannian isometries, discreteness does not imply properness.
- Equivalently this structure is a geodesically complete torsionfree affine connection on M.
Margulis Spacetimes

- Most interesting examples: Margulis (∼ 1980):
 - G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - M^3 noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2.
 - Closely related to the geometry of M^3 is a deformation of the hyperbolic structure on Σ^2.
- Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.
Most interesting examples: Margulis (~ 1980):

- G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - M^3 noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2.
- Closely related to the geometry of M^3 is a deformation of the hyperbolic structure on Σ^2.

Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.
Most interesting examples: Margulis (~ 1980):

- G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - M^3 noncompact complete flat Lorentz 3-manifold.

- Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2.
- Closely related to the geometry of M^3 is a deformation of the hyperbolic structure on Σ^2.

Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.
Most interesting examples: Margulis (∼ 1980):
- G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - M^3 noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2.
- Closely related to the geometry of M^3 is a deformation of the hyperbolic structure on Σ^2.

Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.
Margulis Spacetimes

Most interesting examples: Margulis (≈ 1980):

- G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - M^3 noncompact complete flat Lorentz 3-manifold.

- Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2.
- Closely related to the geometry of M^3 is a deformation of the hyperbolic structure on Σ^2.

Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.
Most interesting examples: Margulis (\(\sim\) 1980):

- \(G\) is a free group acting isometrically on \(\mathbb{E}^{2+1}\)
 - \(L(G) \subset O(2,1)\) is isomorphic to \(G\).
 - \(M^3\) noncompact complete flat Lorentz 3-manifold.

- Associated to every Margulis spacetime \(M^3\) is a noncompact complete hyperbolic surface \(\Sigma^2\).
 - Closely related to the geometry of \(M^3\) is a deformation of the hyperbolic structure on \(\Sigma^2\).

Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.
Margulis Spacetimes

- Most interesting examples: Margulis (∼ 1980):
 - G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - M^3 noncompact complete flat Lorentz 3-manifold.
 - Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2.
 - Closely related to the geometry of M^3 is a deformation of the hyperbolic structure on Σ^2.

- Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.
Most interesting examples: Margulis (~1980):

- G is a free group acting isometrically on \mathbb{E}^{2+1}
 - $\mathbb{L}(G) \subset O(2,1)$ is isomorphic to G.
 - M^3 noncompact complete flat Lorentz 3-manifold.
- Associated to every Margulis spacetime M^3 is a noncompact complete hyperbolic surface Σ^2.
- Closely related to the geometry of M^3 is a deformation of the hyperbolic structure on Σ^2.

Conjecture: Every Margulis spacetime is diffeomorphic to a solid handlebody.
Affine space forms and hyperbolic geometry

Geometric 3-manifolds

- Unlike the 8 geometries of Thurston’s Geometrization, affine structures are not Riemannian.
 - No obvious metrics.
 - Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.

Conjecture:

A complete affine 3-manifold $M^3 = \mathbb{R}^3 / \Gamma$ is finitely covered by:

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).
Geometric 3-manifolds

Unlike the 8 geometries of Thurston’s Geometrization, affine structures are not Riemannian.

- No obvious metrics.
- Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.

Conjecture:

A complete affine 3-manifold \(\mathcal{M}^3 = \mathbb{R}^3 / \Gamma \) is finitely covered by:

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).
Unlike the 8 geometries of Thurston’s Geometrization, affine structures are *not Riemannian*.

- No obvious metrics.
- Usual tools (distance, angle, metric convexity, completeness, volume) **NOT** available.

Conjecture:

A complete affine 3-manifold $M^3 = \mathbb{R}^3/\Gamma$ is finitely covered by:

- An *iterated fibration by cells and circles*; or
- An *open solid handlebody* (Margulis, Drumm examples).
Unlike the 8 geometries of Thurston’s Geometrization, affine structures are *not Riemannian*.

- No obvious metrics.
- Usual tools (distance, angle, metric convexity, completeness, volume) **NOT** available.

Conjecture:

A complete affine 3-manifold $M^3 = \mathbb{R}^3/\Gamma$ is finitely covered by:

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).
Unlike the 8 geometries of Thurston’s Geometrization, affine structures are \textit{not Riemannian}.

- No obvious metrics.
- Usual tools (distance, angle, metric convexity, completeness, volume) \textbf{NOT} available.

\textbf{Conjecture:}

\textbf{A complete affine 3-manifold }$M^3 = \mathbb{R}^3 / \Gamma$\textbf{ is finitely covered by:}

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).
Unlike the 8 geometries of Thurston’s Geometrization, affine structures are *not Riemannian.*

- No obvious metrics.
- Usual tools (distance, angle, metric convexity, completeness, volume) **NOT** available.

Conjecture:

A complete affine 3-manifold $M^3 = \mathbb{R}^3 / \Gamma$ is finitely covered by:

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).
Unlike the 8 geometries of Thurston’s Geometrization, affine structures are not Riemannian.

- No obvious metrics.
- Usual tools (distance, angle, metric convexity, completeness, volume) NOT available.

Conjecture:

A complete affine 3-manifold $M^3 = \mathbb{R}^3/\Gamma$ is finitely covered by:

- An iterated fibration by cells and circles; or
- An open solid handlebody (Margulis, Drumm examples).
Unlike the 8 geometries of Thurston’s Geometrization, affine structures are *not Riemannian*.

- No obvious metrics.
- Usual tools (distance, angle, metric convexity, completeness, volume) **NOT** available.

Conjecture:

A complete affine 3-manifold $M^3 = \mathbb{R}^3/\Gamma$ is finitely covered by:

- An iterated fibration by cells and circles; *or*
- An open solid handlebody (Margulis, Drumm examples).
Milnor’s Question (1977)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n?

- Equivalently (Tits 1971): “Are there discrete groups other than virtually polycyclic groups which act properly, affinely?”
 - If NO, M^n finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact $\implies M^3$ finitely covered by T^2-bundle over S^1 (Fried-G 1983),
 - Geometrizable by Euc, Nil or Sol.
Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n?

- Equivalently (Tits 1971): “Are there discrete groups other than virtually polycyclic groups which act properly, affinely?”
 - If NO, M^n finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact $\implies M^3$ finitely covered by T^2-bundle over S^1 (Fried-G 1983),
 - Geometrizable by Euc, Nil or Sol.
Milnor’s Question (1977)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n?

- Equivalently (Tits 1971): “Are there discrete groups other than virtually polycyclic groups which act properly, affinely?”
 - If NO, M^n finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact $\implies M^3$ finitely covered by T^2-bundle over S^1 (Fried-G 1983),
 - Geometrizable by Euc, Nil or Sol.
Milnor’s Question (1977)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n?

- Equivalently (Tits 1971): “Are there discrete groups other than virtually polycyclic groups which act properly, affinely?”
 - If NO, M^n finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact $\implies M^3$ finitely covered by T^2-bundle over S^1 (Fried-G 1983),
 - Geometrizable by Euc, Nil or Sol.
Milnor’s Question (1977)

Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n?

- Equivalently (Tits 1971): “Are there discrete groups other than virtually polycyclic groups which act properly, affinely?”
 - If NO, M^n finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact $\implies M^3$ finitely covered by T^2-bundle over S^1 (Fried-G 1983),
 - Geometrizable by Euc, Nil or Sol.
Can a nonabelian free group act properly, freely and discretely by affine transformations on \mathbb{R}^n?

- Equivalently (Tits 1971): “Are there discrete groups other than virtually polycyclic groups which act properly, affinely?”
 - If NO, M^n finitely covered by iterated fibration by cells and circles.
 - Dimension 3: M^3 compact \implies M^3 finitely covered by T^2-bundle over S^1 (Fried-G 1983),
 - Geometrizable by Euc, Nil or Sol.
Milnor offers the following results as possible “evidence” for a negative answer to this question.

- Connected Lie group G admits a proper affine action $\iff G$ is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.
Milnor offers the following results as possible “evidence” for a negative answer to this question.

- **Connected Lie group** G **admits a proper affine action** $\iff G$ is amenable (compact-by-solvable).
- Every virtually polycyclic group admits a proper affine action.
Milnor offers the following results as possible “evidence” for a negative answer to this question.

- **Connected Lie group** G admits a proper affine action $\iff G$ is amenable (compact-by-solvable).
- **Every virtually polycyclic group** admits a proper affine action.
An idea for a counterexample...

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of E^3.
- These actions are \textit{not} affine.
- Milnor suggests:

 Start with a free discrete subgroup of $O(2,1)$ and add translation components to obtain a group of affine transformations which acts freely.

 "However it seems difficult to decide whether the resulting group action is properly discontinuous."
An idea for a counterexample...

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of E^3.
- These actions are *not* affine.
- Milnor suggests:

 Start with a free discrete subgroup of $O(2, 1)$ and add translation components to obtain a group of affine transformations which acts freely.

 However it seems difficult to decide whether the resulting group action is properly discontinuous."
An idea for a counterexample...

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3.
- These actions are \textit{not} affine.
- Milnor suggests:

 Start with a free discrete subgroup of $O(2,1)$ and add translation components to obtain a group of affine transformations which acts freely. However it seems difficult to decide whether the resulting group action is properly discontinuous.”
An idea for a counterexample...

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of E^3
- These actions are *not* affine.
- Milnor suggests:

 Start with a free discrete subgroup of $O(2,1)$ and add translation components to obtain a group of affine transformations which acts freely.

 However it seems difficult to decide whether the resulting group action is properly discontinuous.”
An idea for a counterexample...

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3.
- These actions are \textit{not} affine.
- Milnor suggests:

 Start with a free discrete subgroup of $O(2,1)$ and add translation components to obtain a group of affine transformations which acts freely.

 However it seems difficult to decide whether the resulting group action is properly discontinuous.”
An idea for a counterexample...

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3.
- These actions are *not* affine.
- Milnor suggests:

 Start with a free discrete subgroup of $O(2,1)$ and add translation components to obtain a group of affine transformations which acts freely.

 However it seems difficult to decide whether the resulting group action is properly discontinuous.”
An idea for a counterexample...

- Clearly a geometric problem: free groups act properly by isometries on H^3 hence by diffeomorphisms of \mathbb{E}^3.
- These actions are *not* affine.
- Milnor suggests:

 Start with a free discrete subgroup of $O(2,1)$ and add translation components to obtain a group of affine transformations which acts freely.

 However it seems difficult to decide whether the resulting group action is properly discontinuous.”
Lorentzian and Hyperbolic Geometry

- $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:
 \[
 \begin{bmatrix}
 x_1 \\
 y_1 \\
 z_1
 \end{bmatrix} \cdot \begin{bmatrix}
 x_2 \\
 y_2 \\
 z_2
 \end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2
 \]

 and Minkowski space $\mathbb{E}^{2,1}$ is the corresponding affine space, a simply connected geodesically complete Lorentzian manifold.

- The Lorentz metric tensor is $dx^2 + dy^2 - dz^2$.

- $\text{Isom}(\mathbb{E}^{2,1})$ is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group $O(2,1)$.

- The stabilizer of the origin is the group $O(2,1)$ which preserves the hyperbolic plane
 \[
 H^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.
 \]
\[\mathbb{R}^{2,1} \text{ is the 3-dimensional real vector space with inner product:} \]
\[
\begin{bmatrix}
 x_1 \\
 y_1 \\
 z_1
\end{bmatrix} \cdot
\begin{bmatrix}
 x_2 \\
 y_2 \\
 z_2
\end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2 \]

and Minkowski space \(\mathbb{E}^{2,1} \) is the corresponding affine space, a simply connected geodesically complete Lorentzian manifold.

- The Lorentz metric tensor is \(dx^2 + dy^2 - dz^2 \).
- \(\text{Isom}(\mathbb{E}^{2,1}) \) is the semidirect product of \(\mathbb{R}^{2,1} \) (the vector group of translations) with the orthogonal group \(\text{O}(2,1) \).
- The stabilizer of the origin is the group \(\text{O}(2,1) \) which preserves the hyperbolic plane

\[
H^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}. \]
Lorentzian and Hyperbolic Geometry

- $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:

 \[
 \begin{bmatrix}
 x_1 \\
 y_1 \\
 z_1
 \end{bmatrix} \cdot \begin{bmatrix}
 x_2 \\
 y_2 \\
 z_2
 \end{bmatrix} := x_1x_2 + y_1y_2 - z_1z_2
 \]

 and Minkowski space $\mathbb{E}^{2,1}$ is the corresponding affine space, a simply connected geodesically complete Lorentzian manifold.

- The Lorentz metric tensor is $dx^2 + dy^2 - dz^2$.

- $\text{Isom}(\mathbb{E}^{2,1})$ is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group $O(2, 1)$.

- The stabilizer of the origin is the group $O(2, 1)$ which preserves the hyperbolic plane

 \[
 H^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.
 \]
Lorentzian and Hyperbolic Geometry

- $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:
\[
\begin{bmatrix}
x_1 \\
y_1 \\
z_1
\end{bmatrix} \cdot \begin{bmatrix}
x_2 \\
y_2 \\
z_2
\end{bmatrix} := x_1 x_2 + y_1 y_2 - z_1 z_2
\]

and Minkowski space $\mathbb{E}^{2,1}$ is the corresponding affine space, a simply connected geodesically complete Lorentzian manifold.

- The Lorentz metric tensor is $dx^2 + dy^2 - dz^2$.

- $\text{Isom}(\mathbb{E}^{2,1})$ is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group $O(2,1)$.

- The stabilizer of the origin is the group $O(2,1)$ which preserves the hyperbolic plane
\[
H^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.
\]
Lorentzian and Hyperbolic Geometry

- $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:
 \[
 \begin{bmatrix}
 x_1 \\ y_1 \\ z_1
 \end{bmatrix} \cdot \begin{bmatrix}
 x_2 \\ y_2 \\ z_2
 \end{bmatrix} := x_1x_2 + y_1y_2 - z_1z_2
 \]

 and Minkowski space $\mathbb{E}^{2,1}$ is the corresponding affine space, a simply connected geodesically complete Lorentzian manifold.

- The Lorentz metric tensor is $dx^2 + dy^2 - dz^2$.

- $\text{Isom}(\mathbb{E}^{2,1})$ is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group $\text{O}(2,1)$.

- The stabilizer of the origin is the group $\text{O}(2,1)$ which preserves the hyperbolic plane
 \[
 H^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.
 \]
Lorentzian and Hyperbolic Geometry

- $\mathbb{R}^{2,1}$ is the 3-dimensional real vector space with inner product:
 \[
 \begin{bmatrix}
 x_1 \\
 y_1 \\
 z_1
 \end{bmatrix} \cdot \begin{bmatrix}
 x_2 \\
 y_2 \\
 z_2
 \end{bmatrix} := x_1x_2 + y_1y_2 - z_1z_2
 \]
 and Minkowski space $\mathbb{E}^{2,1}$ is the corresponding affine space, a simply connected geodesically complete Lorentzian manifold.

- The Lorentz metric tensor is $dx^2 + dy^2 - dz^2$.

- $\text{Isom}(\mathbb{E}^{2,1})$ is the semidirect product of $\mathbb{R}^{2,1}$ (the vector group of translations) with the orthogonal group $O(2,1)$.

- The stabilizer of the origin is the group $O(2,1)$ which preserves the hyperbolic plane
 \[
 H^2 := \{ v \in \mathbb{R}^{2,1} \mid v \cdot v = -1, z > 0 \}.
 \]
A Schottky group

- Generators g_1, g_2 pair half-spaces $A_i^\pm \rightarrow H^2 \setminus A_i^\pm$.
- g_1, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup A_i^\pm$.
A Schottky group

- Generators g_1, g_2 pair half-spaces A_i^- \rightarrow $\mathbb{H}^2 \setminus A_i^+$.
- g_1, g_2 freely generate discrete group.
- Action proper with fundamental domain $\mathbb{H}^2 \setminus \bigcup A_i^\pm$.
A Schottky group

- Generators g_1, g_2 pair half-spaces $A_i^- \rightarrow H^2 \setminus A_i^+$.
- g_1, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup A_i^\pm$.
A Schottky group

- Generators g_1, g_2 pair half-spaces $A_i^\pm \rightarrow H^2 \setminus A_i^\pm$.
- g_1, g_2 freely generate discrete group.
- Action proper with fundamental domain $H^2 \setminus \bigcup A_i^{\pm}$.
Margulis’s examples

Early 1980’s: Margulis tried to answer Milnor’s question negatively but instead proved that nonabelian free groups can act properly, affinely on \mathbb{R}^3.
Margulis’s examples

Early 1980’s: Margulis tried to answer Milnor’s question negatively but instead proved that nonabelian free groups \textit{can} act properly, affinely on \mathbb{R}^3.

![Diagram](image)
Early 1980’s: Margulis tried to answer Milnor’s question negatively but instead proved that nonabelian free groups can act properly, affinely on \mathbb{R}^3.
Margulis’s examples

Early 1980’s: Margulis tried to answer Milnor’s question negatively but instead proved that nonabelian free groups can act properly, affinely on \mathbb{R}^3.
Flat Lorentz manifolds

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{L} \text{GL}(3, \mathbb{R})$ be the linear part.
 - $L(\Gamma)$ (conjugate to) a discrete subgroup of $\text{O}(2, 1)$;
 - L injective. (Fried-G 1983).
- Homotopy equivalence
 \[M^3 := \mathbb{R}^{2,1}/\Gamma \longrightarrow \Sigma := \mathbb{H}^2/L(\Gamma) \]
 where Σ complete hyperbolic surface.
 - Mess (1990): Σ not compact.
- Γ free;
- Milnor’s suggestion is the only way to construct examples.
Suppose that \(\Gamma \subset \text{Aff}(\mathbb{R}^3) \) acts properly and is not solvable.

- Let \(\Gamma \xrightarrow{\mathbb{L}} \text{GL}(3, \mathbb{R}) \) be the \textit{linear part}.
 - \(\mathbb{L}(\Gamma) \) (conjugate to) a \textit{discrete} subgroup of \(O(2, 1) \);
 - \(\mathbb{L} \) injective. (Fried-G 1983).

- Homotopy equivalence

\[
M^3 := \mathbb{R}^{2,1}/\Gamma \quad \longrightarrow \quad \Sigma := \text{H}^2/\mathbb{L}(\Gamma)
\]

where \(\Sigma \) complete hyperbolic surface.

- Mess (1990): \(\Sigma \) not compact.

- \(\Gamma \) free;

- Milnor’s suggestion is the \textit{only way} to construct examples.
Flat Lorentz manifolds

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{L} \text{GL}(3, \mathbb{R})$ be the linear part.
 - $L(\Gamma)$ (conjugate to) a discrete subgroup of $O(2, 1)$;
 - L injective. (Fried-G 1983).
- Homotopy equivalence

\[M^3 := \mathbb{R}^{2,1}/\Gamma \quad \longrightarrow \quad \Sigma := \mathbb{H}^2/L(\Gamma) \]

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact.
- Γ free;
- Milnor’s suggestion is the only way to construct examples.
Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{\mathbb{L}} \text{GL}(3, \mathbb{R})$ be the linear part.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a discrete subgroup of $\text{O}(2,1)$;
 - \mathbb{L} injective. (Fried-G 1983).

- Homotopy equivalence

$$M^3 := \mathbb{E}^{2,1}/\Gamma \longrightarrow \Sigma := \mathbb{H}^2/\mathbb{L}(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact.

- Γ free;

- Milnor’s suggestion is the only way to construct examples.
Flat Lorentz manifolds

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{L} \text{GL}(3, \mathbb{R})$ be the linear part.
 - $L(\Gamma)$ (conjugate to) a discrete subgroup of $O(2,1)$;
 - L injective. (Fried-G 1983).

- Homotopy equivalence

$$M^3 := \mathbb{H}^{2,1}/\Gamma \longrightarrow \Sigma := \mathbb{H}^2/L(\Gamma)$$

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact.

- Γ free;

- Milnor’s suggestion is the only way to construct examples.
Affine space forms and hyperbolic geometry

Flat Lorentz manifolds

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{L} \text{GL}(3, \mathbb{R})$ be the \textit{linear part}.
 - $L(\Gamma)$ (conjugate to) a \textit{discrete} subgroup of $O(2,1)$;
 - L injective. (Fried-G 1983).

- Homotopy equivalence

\[M^3 := \mathbb{H}^{2,1}/\Gamma \longrightarrow \Sigma := \mathbb{H}^2/L(\Gamma) \]

where Σ complete hyperbolic surface.

- Mess (1990): Σ not compact.

- Γ free;

- Milnor’s suggestion is the \textit{only way} to construct examples.
Affine space forms and hyperbolic geometry

Flat Lorentz manifolds

Suppose that \(\Gamma \subset \text{Aff}(\mathbb{R}^3) \) acts properly and is not solvable.

- Let \(\Gamma \xrightarrow{\mathbb{L}} \text{GL}(3, \mathbb{R}) \) be the linear part.
 - \(\mathbb{L}(\Gamma) \) (conjugate to) a discrete subgroup of \(O(2,1) \);
 - \(\mathbb{L} \) injective. (Fried-G 1983).

- Homotopy equivalence

\[
M^3 := \mathbb{H}^{2,1}/\Gamma \longrightarrow \Sigma := H^2/\mathbb{L}(\Gamma)
\]

where \(\Sigma \) complete hyperbolic surface.

- Mess (1990): \(\Sigma \) not compact.

- \(\Gamma \) free;

- Milnor’s suggestion is the only way to construct examples.
Flat Lorentz manifolds

Suppose that $\Gamma \subset \text{Aff}(\mathbb{R}^3)$ acts properly and is not solvable.

- Let $\Gamma \xrightarrow{\mathbb{L}} \text{GL}(3, \mathbb{R})$ be the *linear part*.
 - $\mathbb{L}(\Gamma)$ (conjugate to) a *discrete* subgroup of $O(2,1)$;
 - \mathbb{L} injective. (Fried-G 1983).

- Homotopy equivalence

 \[M^3 := \mathbb{H}^{2,1}/\Gamma \longrightarrow \Sigma := \mathbb{H}^2/\mathbb{L}(\Gamma) \]

 where Σ complete hyperbolic surface.
 - Mess (1990): Σ not compact.

- Γ free;

- Milnor’s suggestion is the *only way* to construct examples.
Most elements $\gamma \in \Gamma$ are *boosts*, affine deformations of hyperbolic elements of $O(2, 1)$. A fundamental domain is the *slab* bounded by two parallel planes.

A boost identifying two parallel planes.
Most elements $\gamma \in \Gamma$ are *boosts*, affine deformations of hyperbolic elements of $O(2, 1)$. A fundamental domain is the *slab* bounded by two parallel planes.
Most elements $\gamma \in \Gamma$ are *boosts*, affine deformations of hyperbolic elements of $O(2, 1)$. A fundamental domain is the *slab* bounded by two parallel planes.

A boost identifying two parallel planes
Closed geodesics and holonomy

- Each such element leaves invariant a unique (spacelike) line, whose image in $\mathbb{E}^{2,1}/\Gamma$ is a closed geodesic. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0 \\ \alpha(\gamma) \\ 0 \end{bmatrix}$$

- $\ell(\gamma) \in \mathbb{R}^+:$ geodesic length of γ
- $\alpha(\gamma) \in \mathbb{R}:$ (signed) Lorentzian length of γ.
- The unique γ-invariant geodesic C_γ inherits a natural orientation and metric and γ translates along C_γ by $\alpha(\gamma)$.
Each such element leaves invariant a unique (spacelike) line, whose image in $\mathbb{E}^{2,1}/\Gamma$ is a closed geodesic. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0 \\ \alpha(\gamma) \\ 0 \end{bmatrix}$$

- $\ell(\gamma) \in \mathbb{R}^+$: geodesic length of γ
- $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ.
- The unique γ-invariant geodesic C_γ inherits a natural orientation and metric and γ translates along C_γ by $\alpha(\gamma)$.
Closed geodesics and holonomy

- Each such element leaves invariant a unique (spacelike) line, whose image in $\mathbb{E}^{2,1}/\Gamma$ is a closed geodesic. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0 \\ \alpha(\gamma) \\ 0 \end{bmatrix}$$

- $\ell(\gamma) \in \mathbb{R}^+$: geodesic length of γ
- $\alpha(\gamma) \in \mathbb{R}$: (signed) Lorentzian length of γ.
- The unique γ-invariant geodesic C_γ inherits a natural orientation and metric and γ translates along C_γ by $\alpha(\gamma)$.
Closed geodesics and holonomy

- Each such element leaves invariant a unique (spacelike) line, whose image in $\mathbb{E}^{2,1}/\Gamma$ is a \textit{closed geodesic}. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.

\[
\gamma = \begin{bmatrix}
e^{\ell(\gamma)} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-\ell(\gamma)}
\end{bmatrix} \begin{bmatrix}
0 \\
\alpha(\gamma) \\
0
\end{bmatrix}
\]

- $\ell(\gamma) \in \mathbb{R}^+$: \textit{geodesic length} of γ
- $\alpha(\gamma) \in \mathbb{R}$: (signed) \textit{Lorentzian length} of γ.
- The unique γ-invariant geodesic C_γ inherits a natural orientation and metric and γ translates along C_γ by $\alpha(\gamma)$.

Closed geodesics and holonomy

- Each such element leaves invariant a unique (spacelike) line, whose image in $\mathbb{E}^{2,1}/\Gamma$ is a closed geodesic. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.

$$\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0 \\ \alpha(\gamma) \\ 0 \end{bmatrix}$$

- $\ell(\gamma) \in \mathbb{R}^+: \textit{geodesic length of } \gamma$
- $\alpha(\gamma) \in \mathbb{R}: \textit{(signed) Lorentzian length of } \gamma$.
- The unique γ-invariant geodesic C_γ inherits a natural orientation and metric and γ translates along C_γ by $\alpha(\gamma)$.
Each such element leaves invariant a unique (spacelike) line, whose image in $\mathbb{E}^{2,1}/\Gamma$ is a closed geodesic. Just as for hyperbolic surfaces, most loops are freely homotopic to closed geodesics.

\[\gamma = \begin{bmatrix} e^{\ell(\gamma)} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-\ell(\gamma)} \end{bmatrix} \begin{bmatrix} 0 \\ \alpha(\gamma) \\ 0 \end{bmatrix}\]

- $\ell(\gamma) \in \mathbb{R}^+: \text{geodesic length of } \gamma$
- $\alpha(\gamma) \in \mathbb{R}: \text{(signed) Lorentzian length of } \gamma$.
- The unique γ-invariant geodesic C_γ inherits a natural orientation and metric and γ translates along C_γ by $\alpha(\gamma)$.
Slabs don’t work!

- In H^2, the half-spaces $A_i^{±}$ are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint $⇒$ parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!
Slabs don’t work!

- In H^2, the half-spaces A^\pm_i are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!
Slabs don’t work!

- In \mathbb{H}^2, the half-spaces A_i^\pm are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!
Slabs don’t work!

- In H^2, the half-spaces A_i^{\pm} are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!
In H^2, the half-spaces A_i^{\pm} are disjoint;
Their complement is a fundamental domain.
In affine space, half-spaces disjoint \Rightarrow parallel!
Complements of slabs always intersect,
Unsuitable for building Schottky groups!
Slabs don’t work!

- In H^2, the half-spaces A^\pm_i are disjoint;
- Their complement is a fundamental domain.
- In affine space, half-spaces disjoint \Rightarrow parallel!
- Complements of slabs always intersect,
- Unsuitable for building Schottky groups!
Crooked Planes (Drumm 1990)

- Crooked Planes: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

- Two null half-planes connected by lines inside light-cone.
Crooked Planes (Drumm 1990)

- **Crooked Planes**: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

- Two null half-planes connected by lines inside light-cone.
Crooked Planes (Drumm 1990)

- *Crooked Planes*: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

- Two null half-planes connected by lines inside light-cone.
Crooked Planes (Drumm 1990)

- **Crooked Planes**: Flexible polyhedral surfaces bound fundamental polyhedra for free affine groups.

- Two null half-planes connected by lines inside light-cone.
Crooked polyhedron for a boost

- Start with a *hyperbolic slab* in H^2.
- Extend into light cone in $E^{2,1}$.
- Extend outside light cone in $E^{2,1}$.
- Action proper except at the origin and two null half-planes.
Crooked polyhedron for a boost

- Start with a *hyperbolic slab* in H^2.
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.
Start with a hyperbolic slab in H^2.
Extend into light cone in $\mathbb{E}^{2,1}$;
Extend outside light cone in $\mathbb{E}^{2,1}$;
Action proper except at the origin and two null half-planes.
Crooked polyhedron for a boost

- Start with a *hyperbolic slab* in H^2.
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.
Crooked polyhedron for a boost

- Start with a hyperbolic slab in H^2.
- Extend into light cone in $\mathbb{E}^{2,1}$;
- Extend outside light cone in $\mathbb{E}^{2,1}$;
- Action proper except at the origin and two null half-planes.
Images of crooked planes under a linear cyclic group.

The resulting tessellation for a linear boost.
Images of crooked planes under a linear cyclic group

The resulting tessellation for a linear boost.
Adding translations frees up the action — which is now proper on all of $\mathbb{E}^{2,1}$.
Images of crooked planes under an affine deformation

- Adding translations frees up the action
- which is now proper on all of $\mathbb{E}^{2,1}$.
Images of crooked planes under an affine deformation

- Adding translations frees up the action
- — which is now proper on all of $\mathbb{E}^{2,1}$.
Linear action of Schottky group

Crooked polyhedra tile H^2 for subgroup of $O(2,1)$.
Linear action of Schottky group

Crooked polyhedra tile H^2 for subgroup of $O(2,1)$.
Carefully chosen affine deformation acts properly on $\mathbb{R}^{2,1}$.

Affine action of Schottky group
Affine action of Schottky group

Carefully chosen affine deformation acts properly on $\mathbb{R}^{2,1}$.
Affine action of level 2 congruence subgroup of $\text{GL}(2, \mathbb{Z})$

Proper affine deformations exist even for lattices (Drumm).
Proper affine deformations exist even for lattices (Drumm).
The linear part

- Mess’s theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Let Σ be a noncompact complete hyperbolic surface with finitely generated fundamental group. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.
- BASIC PROBLEM:
 Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.
The linear part

- Mess’s theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:
- (Drumm 1990) Let Σ be a *noncompact* complete hyperbolic surface with finitely generated fundamental group. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.

BASIC PROBLEM:

Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.
Mess’s theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:

(Drumm 1990) Let Σ be a noncompact complete hyperbolic surface with finitely generated fundamental group. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.

BASIC PROBLEM:

Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.
Mess’s theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:

(Drumm 1990) Let Σ be a noncompact complete hyperbolic surface with finitely generated fundamental group. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.

BASIC PROBLEM:

Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.
Mess’s theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:

(Drumm 1990) Let Σ be a noncompact complete hyperbolic surface with finitely generated fundamental group. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.

BASIC PROBLEM:

Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.
Mess’s theorem (Σ noncompact) is the only obstruction for the existence of a proper affine deformation:

(Drumm 1990) Let Σ be a noncompact complete hyperbolic surface with finitely generated fundamental group. Then its holonomy group admits a proper affine deformation and M^3 is a solid handlebody.

BASIC PROBLEM:

Classify, both geometrically and topologically, all proper affine deformations of a non-cocompact Fuchsian group.
Marked Signed Lorentzian Length Spectrum

- For every affine deformation \(\Gamma \xrightarrow{\rho=(L,u)} \text{Isom}(\mathbb{E}^{2,1})^0 \), define \(\alpha_u(\gamma) \in \mathbb{R} \) as the (signed) displacement of \(\gamma \) along the unique \(\gamma \)-invariant geodesic \(C_\gamma \), when \(L(\gamma) \) is hyperbolic.
- \(\alpha_u \) is a class function on \(\Gamma \);
- When \(\rho \) acts properly, \(|\alpha_u(\gamma)| \) is the Lorentzian length of the closed geodesic in \(M^3 \) corresponding to \(\gamma \);
- (Margulis 1983) If \(\rho \) acts properly, either
 - \(\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1 \), or
 - \(\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1 \).
- The Margulis invariant \(\Gamma \xrightarrow{\alpha} \mathbb{R} \) determines \(\Gamma \) up to conjugacy (Charette-Drumm 2004).
Marked Signed Lorentzian Length Spectrum

- For every affine deformation $\Gamma \xrightarrow{\rho=(L,u)} \text{Isom}(\mathbb{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_γ, when $L(\gamma)$ is hyperbolic.
- α_u is a class function on Γ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the Lorentzian length of the closed geodesic in M^3 corresponding to γ;
- (Margulis 1983) If ρ acts properly, either
 - $\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1$, or
 - $\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1$.
- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).
For every affine deformation $\Gamma \xrightarrow{\rho=(L,u)} \text{Isom}(\mathbb{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_γ, when $L(\gamma)$ is hyperbolic.

- α_u is a class function on Γ;

- When ρ acts properly, $|\alpha_u(\gamma)|$ is the Lorentzian length of the closed geodesic in M^3 corresponding to γ;

- (Margulis 1983) If ρ acts properly, either
 - $\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1$, or
 - $\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1$.

- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).
For every affine deformation $\Gamma \xrightarrow{\rho=(L,u)} \text{Isom}(\mathbb{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_γ, when $L(\gamma)$ is hyperbolic.

- α_u is a class function on Γ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the \textit{Lorentzian length} of the closed geodesic in M^3 corresponding to γ;

(Margulis 1983) If ρ acts properly, either

- $\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1$, or
- $\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1$.

- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).
Marked Signed Lorentzian Length Spectrum

- For every affine deformation $\Gamma \xrightarrow{\rho=(L,u)} \text{Isom}(\mathbb{E}^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_γ, when $L(\gamma)$ is hyperbolic.
- α_u is a class function on Γ;
- When ρ acts properly, $|\alpha_u(\gamma)|$ is the Lorentzian length of the closed geodesic in M^3 corresponding to γ;
- (Margulis 1983) If ρ acts properly, either
 - $\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1$, or
 - $\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1$.
- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).
Marked Signed Lorentzian Length Spectrum

- For every affine deformation $\Gamma \xrightarrow{\rho=(L,u)} \text{Isom}(E^{2,1})^0$, define $\alpha_u(\gamma) \in \mathbb{R}$ as the (signed) displacement of γ along the unique γ-invariant geodesic C_γ, when $\mathbb{L}(\gamma)$ is hyperbolic.

- α_u is a class function on Γ;

- When ρ acts properly, $|\alpha_u(\gamma)|$ is the *Lorentzian length* of the closed geodesic in M^3 corresponding to γ;

- (Margulis 1983) If ρ acts properly, either
 - $\alpha_u(\gamma) > 0 \ \forall \gamma \neq 1$, or
 - $\alpha_u(\gamma) < 0 \ \forall \gamma \neq 1$.

- The Margulis invariant $\Gamma \xrightarrow{\alpha} \mathbb{R}$ determines Γ up to conjugacy (Charette-Drumm 2004).
Affine deformations

Start with a Fuchsian group $\Gamma_0 \subset \text{O}(2,1)$. An affine deformation is a representation $\rho = \rho_u$ with image $\Gamma = \Gamma_u$ determined by its translational part $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$.

Conjugating ρ by a translation \iff adding a coboundary to u.

Translational conjugacy classes of affine deformations of Γ_0 form the vector space $H^1(\Gamma_0, \mathbb{R}^{2,1})$.

Affine deformations

- Start with a Fuchsian group $\Gamma_0 \subset O(2, 1)$. An affine deformation is a representation $\rho = \rho_u$ with image $\Gamma = \Gamma_u$.

$$\begin{array}{ccc}
\text{Isom}(\mathbb{R}^{2,1}) & \Downarrow L \\
\rho & \nearrow \\
\Gamma_0 & \rightarrow & O(2, 1)
\end{array}$$

determined by its translational part

$$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

- Conjugating ρ by a translation \iff adding a coboundary to u.
- Translational conjugacy classes of affine deformations of Γ_0 form the vector space $H^1(\Gamma_0, \mathbb{R}^{2,1})$.
Affine deformations

Start with a Fuchsian group $\Gamma_0 \subset O(2,1)$. An affine deformation is a representation $\rho = \rho_u$ with image $\Gamma = \Gamma_u$.

\[
\begin{array}{c}
\text{Isom}(\mathbb{R}^{2,1}) \\
\downarrow L \\
\Gamma_0 \to O(2,1)
\end{array}
\]

determined by its translational part

\[u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).\]

Conjugating ρ by a translation \iff adding a coboundary to u.

Translational conjugacy classes of affine deformations of Γ_0 form the vector space $H^1(\Gamma_0, \mathbb{R}^{2,1})$.
Affine deformations

- Start with a Fuchsian group $\Gamma_0 \subset O(2,1)$. An affine deformation is a representation $\rho = \rho_u$ with image $\Gamma = \Gamma_u$

 $$\text{Isom}(\mathbb{R}^{2,1})$$

 $$\rho$$

 $$\Lambda$$

 $\Gamma_0 \xrightarrow{\rho} O(2,1)$

 determined by its translational part

 $$u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}).$$

- Conjugating ρ by a translation \iff adding a coboundary to u.
- Translational conjugacy classes of affine deformations of Γ_0 form the vector space $H^1(\Gamma_0, \mathbb{R}^{2,1})$.
Deformations of hyperbolic structures

- Translational conjugacy classes of affine deformations of Γ_0 \(\leftrightarrow\) infinitesimal deformations of the hyperbolic surface Σ.

- The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ with the Killing form, and the action of $O(2,1)$ is the adjoint representation.

- This Lie algebra comprises the Killing vector fields, infinitesimal isometries, of H^2.

- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^1(\Sigma, \mathfrak{sl}(2,\mathbb{R})) \cong H^1(\Gamma_0, \mathbb{R}^{2,1})$.
Deformations of hyperbolic structures

- Translational conjugacy classes of affine deformations of Γ_0 \(\leftrightarrow\) infinitesimal deformations of the hyperbolic surface Σ.
 - The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ with the Killing form, and the action of $O(2,1)$ is the adjoint representation.
 - This Lie algebra comprises the *Killing vector fields*, infinitesimal isometries, of H^2.

- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^1(\Sigma, \mathfrak{sl}(2,\mathbb{R})) \cong H^1(\Gamma_0, \mathbb{R}^{2,1})$.
Deformations of hyperbolic structures

- Translational conjugacy classes of affine deformations of \(\Gamma_0 \) ↔ infinitesimal deformations of the hyperbolic surface \(\Sigma \).
 - The Lorentzian vector space \(\mathbb{R}^{2,1} \) corresponds to the Lie algebra \(\mathfrak{sl}(2, \mathbb{R}) \) with the Killing form, and the action of \(O(2, 1) \) is the adjoint representation.
 - This Lie algebra comprises the *Killing vector fields*, infinitesimal isometries, of \(H^2 \).
- Infinitesimal deformations of the hyperbolic structure on \(\Sigma \) comprise \(H^1(\Sigma, \mathfrak{sl}(2, \mathbb{R})) \cong H^1(\Gamma_0, \mathbb{R}^{2,1}) \).
Deformations of hyperbolic structures

- Translational conjugacy classes of affine deformations of Γ_0 \leftrightarrow infinitesimal deformations of the hyperbolic surface Σ.
 - The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ with the Killing form, and the action of $O(2,1)$ is the adjoint representation.
 - This Lie algebra comprises the *Killing vector fields*, infinitesimal isometries, of H^2.

- Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^1(\Sigma, \mathfrak{sl}(2,\mathbb{R})) \cong H^1(\Gamma_0, \mathbb{R}^{2,1})$.
The Lorentzian vector space $\mathbb{R}^{2,1}$ corresponds to the Lie algebra $\mathfrak{sl}(2, \mathbb{R})$ with the Killing form, and the action of $O(2, 1)$ is the adjoint representation. This Lie algebra comprises the *Killing vector fields*, infinitesimal isometries, of H^2.

Infinitesimal deformations of the hyperbolic structure on Σ comprise $H^1(\Sigma, \mathfrak{sl}(2, \mathbb{R})) \cong H^1(\Gamma_0, \mathbb{R}^{2,1})$.

Translational conjugacy classes of affine deformations of Γ_0 \hspace{1em} \leftrightarrow \hspace{1em} infinitesimal deformations of the hyperbolic surface Σ.

Deformations of hyperbolic structures
Deformation-theoretic interpretation of Margulis invariant

- Suppose \(u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}) \) defines an \textit{infinitesimal deformation} tangent to a smooth deformation \(\Sigma_t \) of \(\Sigma \).
 - The marked length spectrum \(\ell_t \) of \(\Sigma_t \) varies smoothly with \(t \).
 - Margulis’s invariant \(\alpha_u(\gamma) \) represents the derivative

\[
\left. \frac{d}{dt} \right|_{t=0} \ell_t(\gamma)
\]

(G-Margulis 2000).
- \(\Gamma_u \) is proper \(\implies \) all closed geodesics lengthen (or shorten) under the deformation \(\Sigma_t \).
- When \(\Sigma \) is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009).
Suppose \(u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}) \) defines an *infinitesimal deformation* tangent to a smooth deformation \(\Sigma_t \) of \(\Sigma \).

- The marked length spectrum \(\ell_t \) of \(\Sigma_t \) varies smoothly with \(t \).
- Margulis’s invariant \(\alpha_u(\gamma) \) represents the derivative

\[
\frac{d}{dt} \bigg|_{t=0} \ell_t(\gamma)
\]

(G-Margulis 2000).

- \(\Gamma_u \) is proper \(\implies \) all closed geodesics lengthen (or shorten) under the deformation \(\Sigma_t \).

- When \(\Sigma \) is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009).
Deformation-theoretic interpretation of Margulis invariant

- Suppose \(u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}) \) defines an \textit{infinitesimal deformation} tangent to a smooth deformation \(\Sigma_t \) of \(\Sigma \).
 - The marked length spectrum \(\ell_t \) of \(\Sigma_t \) varies smoothly with \(t \).
 - Margulis’s invariant \(\alpha_u(\gamma) \) represents the derivative \(\frac{d}{dt} \bigg|_{t=0} \ell_t(\gamma) \).
 (G-Margulis 2000).
- \(\Gamma_u \) is proper \(\implies \) all closed geodesics lengthen (or shorten) under the deformation \(\Sigma_t \).
- When \(\Sigma \) is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009).
Deformation-theoretic interpretation of Margulis invariant

- Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ.
 - The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
 - Margulis’s invariant $\alpha_u(\gamma)$ represents the derivative
 $$\left. \frac{d}{dt} \right|_{t=0} \ell_t(\gamma)$$
 (G-Margulis 2000).
 - Γ_u is proper \implies all closed geodesics lengthen (or shorten) under the deformation Σ_t.
 - When Σ is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009).
Deformation-theoretic interpretation of Margulis invariant

- Suppose \(u \in Z^1(\Gamma_0, \mathbb{R}^{2,1}) \) defines an infinitesimal deformation tangent to a smooth deformation \(\Sigma_t \) of \(\Sigma \).
 - The marked length spectrum \(\ell_t \) of \(\Sigma_t \) varies smoothly with \(t \).
 - Margulis’s invariant \(\alpha_u(\gamma) \) represents the derivative
 \[
 \left. \frac{d}{dt} \right|_{t=0} \ell_t(\gamma)
 \]
 (G-Margulis 2000).
- \(\Gamma_u \) is proper \(\implies \) all closed geodesics lengthen (or shorten) under the deformation \(\Sigma_t \).
- When \(\Sigma \) is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009).
Suppose $u \in Z^1(\Gamma_0, \mathbb{R}^{2,1})$ defines an *infinitesimal deformation* tangent to a smooth deformation Σ_t of Σ.

- The marked length spectrum ℓ_t of Σ_t varies smoothly with t.
- Margulis’s invariant $\alpha_u(\gamma)$ represents the derivative

$$\left. \frac{d}{dt} \right|_{t=0} \ell_t(\gamma)$$

(G-Margulis 2000).

- Γ_u is proper \iff all closed geodesics lengthen (or shorten) under the deformation Σ_t.

- When Σ is homeomorphic to a three-holed sphere, the converse holds. (Jones 2004, Charette-Drumm-G 2009).
Affine space forms and hyperbolic geometry

Extensions of the Margulis invariant

- \(\alpha_u \) extends to parabolic \(\mathbb{L}(\gamma) \). (Charette-Drumm 2005).
- (Margulis 1983) \(\alpha_u(\gamma^n) = |n|\alpha_u(\gamma) \).
 - Therefore \(\alpha_u(\gamma)/\ell(\gamma) \) is constant on cyclic (hyperbolic) subgroups of \(\Gamma \).
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow \(\Phi \) of \(U\Sigma \).
- The Margulis invariant extends to a continuous functional \(\Psi_u(\mu) \) on the space \(C(\Sigma) \) of \(\Phi \)-invariant probability measures \(\mu \) on \(U\Sigma \). (G-Labourie-Margulis 2009)

- When \(\mathbb{L}(\Gamma) \) is convex cocompact, \(\Gamma_u \) acts properly \(\iff \) \(\Psi_u(\mu) \neq 0 \) for all invariant probability measures \(\mu \).
- Since \(C(\Sigma) \) is connected, either the \(\Psi_u(\mu) \) are all positive or all negative.
Extensions of the Margulis invariant

- α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- $(\text{Margulis 1983}) \quad \alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
- The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $C(\Sigma)$ of Φ-invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly $\iff \Psi_u(\mu) \neq 0$ for all invariant probability measures μ.
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.
Extensions of the Margulis invariant

- α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $C(\Sigma)$ of Φ-invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ.
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.
Extensions of the Margulis invariant

- α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
- The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $C(\Sigma)$ of Φ-invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ.
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.
Extensions of the Margulis invariant

- α_u extends to parabolic $L(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
- The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $C(\Sigma)$ of Φ-invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009)
- When $L(\Gamma)$ is convex cocompact, Γ_u acts properly $\iff \Psi_u(\mu) \neq 0$ for all invariant probability measures μ.
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.
Extensions of the Margulis invariant

- α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
- The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $C(\Sigma)$ of Φ-invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009)

- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ.
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.
Extensions of the Margulis invariant

- α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
 - The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $C(\Sigma)$ of Φ-invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ.
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.
Extensions of the Margulis invariant

- α_u extends to parabolic $\mathbb{L}(\gamma)$. (Charette-Drumm 2005).
- (Margulis 1983) $\alpha_u(\gamma^n) = |n|\alpha_u(\gamma)$.
 - Therefore $\alpha_u(\gamma)/\ell(\gamma)$ is constant on cyclic (hyperbolic) subgroups of Γ.
 - Such cyclic subgroups correspond to periodic orbits of the geodesic flow Φ of $U\Sigma$.
- The Margulis invariant extends to a continuous functional $\Psi_u(\mu)$ on the space $C(\Sigma)$ of Φ-invariant probability measures μ on $U\Sigma$. (G-Labourie-Margulis 2009)
- When $\mathbb{L}(\Gamma)$ is convex cocompact, Γ_u acts properly \iff $\Psi_u(\mu) \neq 0$ for all invariant probability measures μ.
- Since $C(\Sigma)$ is connected, either the $\Psi_u(\mu)$ are all positive or all negative.
The Deformation Space

- The deformation space of marked Margulis space-times arising from a topological surface S with finitely generated fundamental group is a bundle over the Fricke space $\mathcal{F}(S)$ of marked hyperbolic structures $S \rightarrow \Sigma$ on S.
 - The fiber is the subspace of $H^1(\Sigma, \mathbb{R}^{2,1})$ (equivalence classes of all affine deformations) consisting of proper deformations of the fixed hyperbolic surface Σ.
 - It is nonempty (Drumm 1990).
 - (G-Labourie-Margulis 2010) Convex domain in $H^1(\Sigma, \mathbb{R}^{2,1})$ defined by the generalized Margulis-invariants of measured geodesic laminations on Σ.
- Thus the deformation space is a cell with some boundary components corresponding to the ends of S.
The Deformation Space

- The deformation space of marked Margulis space-times arising from a topological surface \(S \) with finitely generated fundamental group is a bundle over the Fricke space \(\mathcal{F}(S) \) of marked hyperbolic structures \(S \rightarrow \Sigma \) on \(S \).
 - The fiber is the subspace of \(H^1(\Sigma, \mathbb{R}^{2,1}) \) (equivalence classes of all affine deformations) consisting of proper deformations of the fixed hyperbolic surface \(\Sigma \).
 - It is nonempty (Drumm 1990).
 - (G-Labourie-Margulis 2010) Convex domain in \(H^1(\Sigma, \mathbb{R}^{2,1}) \) defined by the generalized Margulis-invariants of measured geodesic laminations on \(\Sigma \).

- Thus the deformation space is a cell with some boundary components corresponding to the ends of \(S \).
The Deformation Space

- The deformation space of marked Margulis space-times arising from a topological surface \(S \) with finitely generated fundamental group is a bundle over the Fricke space \(\mathcal{F}(S) \) of marked hyperbolic structures \(S \rightarrow \Sigma \) on \(S \).
- The fiber is the subspace of \(H^1(\Sigma, \mathbb{R}^2, 1) \) (equivalence classes of all affine deformations) consisting of proper deformations of the fixed hyperbolic surface \(\Sigma \).
- It is nonempty (Drumm 1990).
- (G-Labourie-Margulis 2010) Convex domain in \(H^1(\Sigma, \mathbb{R}^2, 1) \) defined by the generalized Margulis-invariants of measured geodesic laminations on \(\Sigma \).
- Thus the deformation space is a cell with some boundary components corresponding to the ends of \(S \).
The Deformation Space

- The deformation space of marked Margulis space-times arising from a topological surface S with finitely generated fundamental group is a bundle over the Fricke space $\mathcal{F}(S)$ of marked hyperbolic structures $S \to \Sigma$ on S.
 - The fiber is the subspace of $H^1(\Sigma, \mathbb{R}^{2,1})$ (equivalence classes of all affine deformations) consisting of proper deformations of the fixed hyperbolic surface Σ.
 - It is nonempty (Drumm 1990).
 - (G-Labourie-Margulis 2010) Convex domain in $H^1(\Sigma, \mathbb{R}^{2,1})$ defined by the generalized Margulis-invariants of measured geodesic laminations on Σ.
- Thus the deformation space is a cell with some boundary components corresponding to the ends of S.
The Deformation Space

- The deformation space of marked Margulis space-times arising from a topological surface S with finitely generated fundamental group is a bundle over the Fricke space $\mathcal{F}(S)$ of marked hyperbolic structures $S \rightarrow \Sigma$ on S.
 - The fiber is the subspace of $H^1(\Sigma, \mathbb{R}^{2,1})$ (equivalence classes of all affine deformations) consisting of proper deformations of the fixed hyperbolic surface Σ.
 - It is nonempty (Drumm 1990).
 - (G-Labourie-Margulis 2010) Convex domain in $H^1(\Sigma, \mathbb{R}^{2,1})$ defined by the generalized Margulis-invariants of measured geodesic laminations on Σ.

- Thus the deformation space is a cell with some boundary components corresponding to the ends of S.
The Deformation Space

- The deformation space of marked Margulis space-times arising from a topological surface S with finitely generated fundamental group is a bundle over the Fricke space $\mathcal{F}(S)$ of marked hyperbolic structures $S \rightarrow \Sigma$ on S.
 - The fiber is the subspace of $H^1(\Sigma, \mathbb{R}^2, 1)$ (equivalence classes of all affine deformations) consisting of proper deformations of the fixed hyperbolic surface Σ.
 - It is nonempty (Drumm 1990).
 - (G-Labourie-Margulis 2010) Convex domain in $H^1(\Sigma, \mathbb{R}^2, 1)$ defined by the generalized Margulis-invariants of measured geodesic laminations on Σ.

- Thus the deformation space is a cell with some boundary components corresponding to the ends of S.
The three-holed sphere (Charette-Drumm-G 2009)

- Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.
- Charette-Drumm-Margulis-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3.
- If $\alpha(\partial_i) > 0$ for $i = 1, 2, 3$, then Γ admits a crooked fundamental polyhedron:
 - Γ acts properly;
 - M^3 is a solid handlebody of genus two.
- Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then every curve lengthens under a deformation of the hyperbolic surface Σ.
The three-holed sphere (Charette-Drumm-G 2009)

- Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.
- Charette-Drumm-Margulis-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3.
- If $\alpha(\partial_i) > 0$ for $i = 1, 2, 3$, then Γ admits a crooked fundamental polyhedron:
 - Γ acts properly;
 - M^3 is a solid handlebody of genus two.
- Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then every curve lengthens under a deformation of the hyperbolic surface Σ.
Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.

Charette-Drumm-Margulis-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3.

If $\alpha(\partial_i) > 0$ for $i = 1, 2, 3$. then Γ admits a crooked fundamental polyhedron:

- Γ acts properly;
- M^3 is a solid handlebody of genus two.

Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then every curve lengthens under a deformation of the hyperbolic surface Σ.
Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.

Charette-Drumm-Margulis-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3.

If $\alpha(\partial_i) > 0$ for $i = 1, 2, 3$, then Γ admits a crooked fundamental polyhedron:
- Γ acts properly;
- M^3 is a solid handlebody of genus two.

Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then every curve lengthens under a deformation of the hyperbolic surface Σ.
Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.

Charette-Drumm-Margulis-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3.

If $\alpha(\partial_i) > 0$ for $i = 1, 2, 3$, then Γ admits a crooked fundamental polyhedron:
- Γ acts properly;
- M^3 is a solid handlebody of genus two.

Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then every curve lengthens under a deformation of the hyperbolic surface Σ.
Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.

Charette-Drumm-Margulis-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3.

If $\alpha(\partial_i) > 0$ for $i = 1, 2, 3$, then Γ admits a crooked fundamental polyhedron:
- Γ acts properly;
- M^3 is a solid handlebody of genus two.

Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then every curve lengthens under a deformation of the hyperbolic surface Σ.
Suppose Σ is a three-holed sphere with boundary $\partial_1, \partial_2, \partial_3$.

Charette-Drumm-Margulis-invariants of $\partial \Sigma$ identify the deformation space $H^1(\Gamma_0, \mathbb{R}^{2,1})$ of equivalence classes of all affine deformations with \mathbb{R}^3.

If $\alpha(\partial_i) > 0$ for $i = 1, 2, 3$, then Γ admits a crooked fundamental polyhedron:
- Γ acts properly;
- M^3 is a solid handlebody of genus two.

Corollary (in hyperbolic geometry): If each component of $\partial \Sigma$ lengthens, then every curve lengthens under a deformation of the hyperbolic surface Σ.

Linear functionals $\alpha(\gamma)$ when Σ is a three-holed sphere.

The triangle is bounded by the lines corresponding to $\gamma \subset \partial \Sigma$. Its interior parametrizes proper affine deformations.
Linear functionals $\alpha(\gamma)$ when Σ is a three-holed sphere

The triangle is bounded by the lines corresponding to $\gamma \subset \partial \Sigma$. Its interior parametrizes proper affine deformations.
Linear functionals $\alpha(\gamma)$ when Σ is a one-holed torus

Properness region bounded by infinitely many intervals, each corresponding to a simple loop on Σ. Boundary points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).
Linear functionals $\alpha(\gamma)$ when Σ is a one-holed torus

Properness region bounded by infinitely many intervals, each corresponding to a simple loop on Σ. Boundary points lie on intervals or are points of strict convexity (irrational laminations) (G-Margulis-Minsky).
Questions for the future

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold M^3 a solid handlebody?
- Which $\mu \in C(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- Lorentzian Kleinian groups: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein 2 + 1-space?
Questions for the future

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold M^3 a solid handlebody?
- Which $\mu \in \mathcal{C}(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- Lorentzian Kleinian groups: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein $2 + 1$-space?
Questions for the future

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold \mathcal{M}^3 a solid handlebody?
- Which $\mu \in \mathcal{C}(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- Lorentzian Kleinian groups: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein 2 + 1-space?
Questions for the future

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold M^3 a solid handlebody?
- Which $\mu \in C(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- Lorentzian Kleinian groups: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein 2 + 1-space?
Questions for the future

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold M^3 a solid handlebody?
- Which $\mu \in C(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- Lorentzian Kleinian groups: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein 2 + 1-space?
Questions for the future

- Does every proper affine deformation admit a crooked fundamental polyhedron?
- Is every nonsolvable complete affine 3-manifold M^3 a solid handlebody?
- Which $\mu \in C(\Sigma)$ maximize (minimize) the generalized Margulis invariant?
- Can other hyperbolic groups (closed surface, 3-manifold groups) act properly and affinely?
- **Lorentzian Kleinian groups**: How do affine Schottky groups deform as discrete groups of conformal transformations of Einstein $2 + 1$-space?