
EXPERIMENTAL GEOMETRY LAB AT THE
UNIVERSITY OF MARYLAND

WILLIAM M. GOLDMAN

The Experimental Geometry Lab

Founded in 2000 by W. Goldman and R. Schwartz, the EGL has
been a focus for interactive projects in geometry research at the un-
dergraduate level. After Schwartz resigned from the Maryland faculty,
the EGL has been run by Goldman alone, together with a (rotating)
group of advanced graduate students and postdocs. The goal of the
EGL was to develop a community of mathematicians at all levels in-
volved in experimental investigations of geometric structures (broadly
defined) in dimensions 2 and 3.

Mostly active in the summers, when students have freer schedules to
pursue independent study, the EGL has trained about 5-10 students on
the average each year. The software projects are available and are doc-
umented on the EGL web page http://www.egl.umd.edu, although
the website is somewhat out-of-date.

Our vision is that these software packages would be easily acces-
sible on the internet so that a computer user surfing the web might
encounter EGL projects, and start accessing them. Hopefully the cool
graphics and intriguing animations would pique the interests of this
hypothetical user, who would be tempted to learn more about the sub-
ject (mathematics). The software would be full of demos, which can
be easily tweaked to explore variations of these projects. Some users
might be tempted to actually get into the code and write and expand
the existing programs. This would provide an invitation to cutting-
edge mathematical research topics, which serves as both a fascinating
and satisfying way to learn mathematics.

Our philosophy so far in these programming projects has emphasized
commincation. The programs tend to be very short, but very dense.
Much content is packed into just a few lines of code. Therefore I have
encouraged a student to liberally document and comment their code
and provide many demos and examples. (At one point I suggest about
90% comments to ever 10% of actual code). Easily understandable,

Date: August 25, 2016.
1



2 W. GOLDMAN

modular code, is important both for expediting the debugging process,
as well as making code which can extend to larger projects.

The EGL format which seemed to work best involved one or two
advanced graduate students or postdocs, who ran an intensive course
for the students, often beginning undergraduate math majors, to teach
the students basic mathematics needed for the software projects. The
software projects have so far all been in areas vaguely related to Gold-
man’s research interests: geometric structures on manifolds and dis-
crete groups. However, they involve material (such as geometric group
theory, non-Euclidean geometry, advanced linear algebra) which, al-
though basic, are not part of the standard beginning undergraduate
curriculum.

Recently Scientific American reported on the EGL, its formation
and its export to other insitutions by former members: see:
http://www.scientificamerican.com/article.cfm

?id=deep-spaces-geometry-labs

An example of mentoring

In 2007, Rachel Kirsch, an undergradate math major at Maryland,
began a project in the EGL, jointly supervised by then-graduate stu-
dent Ryan Hoban. Using the hyperbolic geometry packages and combi-
natorial group theory she drew illustrations of subtesellations of genus-
two surface groups inside triangle tesselations (Figures 1 and 2). This
involved creating algorithms inside a noncommutative group (the group
generated by refletions in the sides of the triangle) rather than explicit
numerical computations with matrices in hyperbolic geometry. Work-
ing at this high-level she learned abstract ideas from geometric group
theory and how to apply to them to a specific concrete problem. Her
illustrations were used in my paper Higgs bundles and geometric struc-
tures on surfaces, in The Many Facets of Geometry: a Tribute to Nigel
Hitchin, O. Garćıa-Prada, J.P. Bourgignon, and S. Salamon (eds.),
Oxford University Press (2010) 129 – 163, math.DG.0805.1793.

Rachel continued her study of mathematics in the doctoral program
at the University of Nebraska, where she is studying combinatorics.



GEOMETRY LAB 3

Figure 1. Subtesselations by 45-degee regular hexagons

Figure 2. Subtesselations by 90-degee regular hexagons



4 W. GOLDMAN

Origins of the project

I had been developing software for visualizing geometric structures
since 1984 when at MIT I programmed a Commodore 64 to draw convex
real projective structures on surfaces. (Compare Figures 3, 4 and 5.

Figure 3. Projective deformation of a Euclidean trian-
gle tesselation



GEOMETRY LAB 5

Figure 4. A hyperbolic triangle tesselation in its pro-
jective model

Figure 5. Projective deformation of a hyperbolic trian-
gle tesselation



6 W. GOLDMAN

I continued this when I moved to Maryland in 1986 and produced
computer-generated illustrations for my book “Complex Hyperbolic
Geometry,” Oxford Mathematical Monographs, Oxford University Press
xvii + 316 pp. + 58 illus. (1999). Significant development occurred at
the Geometry Supercomputer Project at the University of Minnesota.
With then-graduate students Mark Phillips and Robert Miner, we de-
veloped a visualization program Heisenberg to draw pictures on the
boundary of complex hyperbolic space. We produced two VHS movies,
called A tour of Heisenberg space, and Complex hyperbolic Kleinian
groups to illustrate the spherical CR-geometry on the Heisenberg group
bounding complex hyperbolic space.

At an early stage I learned the quirkiness of these projects. We were
developing the software tools simultaneously with developing the math-
ematics. In the complex hyperbolic geometry project, I was building on
some software written by Thurston student Silvio Levy to draw limit
sets of complex hyperbolic quasi-Fuchsian groups, articles by Mostow,
books by Helgason and Rudin, and a paper written by É. Cartan. All
of these references used different conventions so in order to blend the
ideas together I had to choose one standard convention for the com-
putations. Then I learned a great deal of mathematics by proving the
theorems from our source using the techniques and viewpoints of the
other. Much of the new mathematics found in Complex Hyperbolic
Geometry was developed using this technique.

An interesting example of this style of working was the pair of totally
geodesic foliations of bisectors in complex hyperbolic space. Mostow
showed that bisectors could be understood as a pencil of complex hy-
perplanes (“slices”) along an orthogonal geodesic (“the spine”). I de-
veloped formulas for their boundaries (“spinal spheres”) in Heisenberg
space and proceeded to draw them on a machine. I noticed similarities
between these and the formulas I was using to draw R-circles (bound-
aries of R-planes, totally real totally geodesic surfaces in H2

C). These
similarities led to the realization that bisectors decomposed into R-
planes as well as complex hyperplanes. This elementary result became
a cornerstone of the theory developed in my book Complex Hyperbolic
Geometry. Some of the relationship between the expeerimental ap-
proach and the traditional approached is discussed in the introduction
of that book.

Figures 6 and 7 illustrate the geometry of the boundary of complex
hyperbolic space (the conformal geometry of the Heisenberg group).



GEOMETRY LAB 7

Figure 6. An ideal triangle group in Heisenberg geometry

Figure 7. The boundary of a bisector in Heisenberg,
foliated in two ways



8 W. GOLDMAN

More Geometry Labs

Anton Lukyanenko joined the EGL at the end of his freshman year at
Maryland, and soon he began supervising projects and administering
the lab. After completing his Bachelors degree at Maryland, he stayed
on and completed his Masters degree in 2008. He then moved to the
doctoral program at UIUC in 2008, where he and Jayadev Athreya
established the Illinois Geometry Lab in 2010. This project was ex-
tremely successful with enormous participation from many different
faculty members and students. After completing his doctorate in 2014
under Jeremy Tyson, he moved to the University of Michigan as a post-
doc. Jayadev Athreya has since moved to the University of Washington,
and now Jeremy Tyson is running the Illinois Lab. Now Lukyanenko
and Athreya are in the process of starting labs in Ann Arbor and Seat-
tle, respectively.

Sean Lawton completed his doctorate in 2006 at Maryland, and re-
turned in 2009 as a postdoc. His affiliation with the EGL began earlier,
while he was a graduate student, helping with numerous outreach ac-
tivities. During that year he and then-graduate student Ryan Hoban
ran an intensive summer REU-type project in the EGL. After that, he
moved to UT-RGV and established a Geometry Lab (EAGL) there in
2009. In 2014 he moved to George Mason University, where he and
his colleague Christopher Manon extablished the Mason Geometry Lab
(MEGL).

David Dumas at the University of Illinois at Chicago has established
a Geometry Lab there.

With the proliferation of these activities, the organizers banded to-
gether and formed Geometry Labs United, which held its first confer-
ence in September 2015. In addition to distinguished mathematical
researchers whose work had an experimental component, there was a
workshop on how to establish similar projects.

Recent activities at Maryland

The Experimental Geometry Lab has been useful in several projects
in the recently established MAPS-REU program in the Maryland Math-
ematics Department. Also several graduate students have developed
visualization tools, such as Mathematica Notebooks and 3d prints, to
aid their research.

Recently Goldman has been developing a course (MATH/AMSC 431:
Geometry for Computer Applications) which teaches mathematics to
undergraduates interested in computer graphics, robotics and computer
vision. Starting from a background in calculus and linear algebra,



GEOMETRY LAB 9

the course the course develops fundamental mathematics necessary for
computer graphics, robotics, computer vision and other applications of
geometry:

• Projective geometry: the mathematics of perspective;
• Vectors, matrices and their geometric interpretations;
• Geometric transformations (rotations, reflections, translations,

projections);
• Homogeneous coordinates, and data types for points, lines and

planes;
• Conic sections;
• Complex numbers and quaternions;
• Topology.

Up to now, the course (which has run six times) has not involved many
programming projects. A future direction for the EGL is to develop
interactive tools (for example in Geogebra) to illustrate these concepts.

The advent of 3-dimensional printing has opened up a new direction
in these projects. Current doctoral student Jean-Philippe Burelle de-
veloped models of fundamental domains for Margulis spacetimes (com-
plete flat Lorentzian 3-manifolds with free fundamental groups), which
are illsustrated in Figures 8,9.



10 W. GOLDMAN

Figure 8. A crooked polyhedron

Figure 9. Head-on view of crooked polyhedron



GEOMETRY LAB 11

Overview of Math 431, Fall 2015

by Caleb Ashley and Bill Goldman

This course develops the theory of data types for computer applica-
tions. Specifically we develop algebraic data types for computer graph-
ics, computer vision and robotics. If we take points, lines, lengths,
angles, areas, etc. as the (extremely basic) building blocks of graphics,
then an over arching theme is to discover ways in which to represent
these geometric objects in a computer. Simultaneously, we aim to de-
velop ways in which to represent in a computer the manner in which
these geometric objects transform.

—Imagine designing a video game—

Your avatar is flying a spaceship through a hazardous
jungle populated by wild monsters, evil dinosaurs and
poisonous plants, with dangerous objects zipping by.
Throw in a few earthquakes, tsunamis, hurricanes and
tornados, too, just for fun.

Of course enemies are chasing you, shooting rockets
and subjecting your craft to waves of treacherous force
fields. In addition to steering your vehicle, you need
to be able to change your viewpoints and perspectives
in order to fully gauge your direction and speed. Your
instruments need to sense all the awful perils your ad-
versary has aimed at you. Your survival, and the lives



12 W. GOLDMAN

of millions of other people, depends on being able to
manipulate — reliably, quickly, and in real time — huge
amounts of graphical data by many types of geometric
transformations: rotations, dilations, translations, re-
flections, and changes of perspective.

Goals

• Due to total size of the graphical data, the data types must be
compact and efficiently designed.
• Due to the demands of interactive use, the computations must

be as fast as possible.
• Due to the demands of ever-changing technology, the code must

be easy to debug, maintain, and update. Thus the data types
and the manipulation routines must be readable, succinct and
comprehensible to other programmers.
• The data will ultimately be vectors and matrices, and the math-

ematical routines basically linear algebra. Matrix operations
are cheap, efficient and easy to implement. The compelling ad-
vantage of linear transformations is that —by using coordinates
on a vector space defined by a basis — the geometric informa-
tion is encoded in a finite set of numbers. It’s only how they
are manipulated which varies by their context.

Here are some examples of how abstraction and mathematical elegance
are both means and end in regards to computer applications.

Data types in plane geometry

First consider the familiar case is that of points in the plane. Points
are described uniquely by an ordered pair of numbers. Vector op-
erations enable us to compute geometric relations (such as distance)
between points. Furthermore transformations of the plane are conve-
niently described by matrices. The calculations are cheap to implement
on a computer, easy to understand.

Trying to do the same for lines in the plane is more difficult and more
interesting. However, programming a video game may require you to
transform lines and, eventually, more complicated graphical objects, in
a similar way. The reality is that lines in the plane are not as easy to
parametrize as points in the plane: the set of lines does not admit a
coordinate system as easy as just the (x, y)-coordinates which uniquely
describe arbitrary points.

Here are some ways we describe lines in the plane. As you can see,
none of them are as convenient as parametrizing points in the plane.



GEOMETRY LAB 13

(1) Given two distinct points p1 and p2 (represented as 2-vectors),
the line ←→p1p2 joining them is described by equations

y − y1
x− x1

=
y2 − y1
x2 − x1

or, in parametric form,

x = x1 + t(x2 − x1)
y = y1 + t(y2 − y1)

This parametrization has the following drawbacks:
• The points p1, p2 are not unique and may not be so efficient

to find; there are many pairs of points which determine a
given line.
• Determining when two different pairs (p1, p2) determine the

same line may be unnecesarily time-consuming.
• The initial data requires that p1 6= p2. Checking this each

time is necessary (and time-consuming).
(2) Given a slope m ∈ R and b ∈ R, the line with slope m and

y-intercept b has slope-intercept form

y = mx+ b.

This efficiently parametrizes all non-vertical lines uniquely by
the pair (m, b) ∈ R2. However, vertical lines have “infinite
slope” (m =∞) and don’t fit nicely into this parametrization.
However they are parametrized by the x-intercept a ∈ R: the
vertical line corresponding to a ∈ R is given by x = a.

(3) One can remove (or, more accurately, “hide”) the difficulty with
infinite slope by replacing the slope m by the angle of inclina-
tion, that is, the angle θ the line makes with the x-axis. These
two parameters relate by:

m = tan(θ)

However, like all angles, θ is only defined up to multiples of π.
One can restrict θ to lie in an interval, say, 0 ≤ θ < π, but this
line does not vary continuously as θ ↗ π.

(4) Lines can also be parametrized by their closest-point-parameters
as follows. A line L contains a unique point p which is closest to
the origin O. If p 6= O, then this point determines L uniquely.
However, the case p = O (that is, when L 3 O) has to be
handled separately, like the vertical lines in the slope-intercept
parametrization.



14 W. GOLDMAN

Topology is the villain

The problem cannot be solved easily, since it reflects a fundamental
fact, involving the topology of the set of lines in the plane. Unlike the
points in the plane, which form a tractable algebraic object (a vector
space), the lines in the plane form a space which is inherently more
complicated. “Topology” refers to how the elements of the set are
organized, and even for simple familiar objects, the topologies are very
subtle.

Angles are illustrative of this phenomenon. Since the set of angles
“closes up” —- when you go around a full 360o — the set cannot be
identified with a set of numbers or vectors in a completely satisfactory
way. One has to introduce special cases to handle exceptions, and there
is no way to get around this.

Other situations, like sets of lines in the plane or 3-space, lead to even
more complicated topologies. For these two cases, the set is nonori-
entable, like a Möbius band, and this is particularly difficult to coordi-
natize.

Projective geometry began by the efforts of Renaissance architects
and artists to deal with perspective. Projective space enlarges our usual
space by introducing new points (called ideal points) which is where
parallel lines eventually meet. (Imagine an aerial view of railroad tracks
converging in the horizon.)

Projective space also has a very complicated topology; for example,
the projective plane is nonorientable. It enjoys a set of homogeneous
coordinates, which are only unique up to scaling — and to do calcula-
tions in projective geometry one has to work only in pieces of the space
which are manageable and do admit vector coordinates. The geomet-
ric calculations all reduce to matrix operations in linear algebra, but
to specify an arbitrary point in two-dimensional projective space, one
needs three coordinates.

Transformations and data types

Certain types of transformations work better in certain coordinate
systems. For example, polar coordinates behave very well under rota-
tions, but they can be extraordinarily awkward in others. Try writing
down the expression for a translation in polar coordinates and compare
it to the expression in rectilinear coordinates.

Transformations preserving some special geometric properties may
be suitable for special data types, which can by more succinct and more
efficient. For example, angle-preserving transformations can be written
very elegantly in terms of complex numbers: if z ∈ C is a complex



GEOMETRY LAB 15

number, then the affine transformation z 7−→ λz+τ , where λ ∈ C\{0}
and τ ∈ C is the most general orientation-preserving transformation
which preserves angles. Whereas general affine transformations of the
plane need six numbers, angle-preserving transformations depend only
on two complex numbers, which is equivalent to four (real) numbers.
This represents a significant improvement in the storage of data.

In 3 dimensions, rotations are more complicated, but they can be
represented very elegantly using quaternions, the four-dimensional gen-
eralization of complex numbers. A linear rotation of R3 admits a very
nice description in terms of quaternions, generalizing the remarkable
formula

eiθ = cos(θ) + i sin(θ)

Quaternions are more complicated than complex numbers, largely
due to the fact that AB 6= BA in general. However, they are easily
implemented in terms of standard vector operations. Discovered in
1843 by W. R. Hamilton (long before the advent of computer graphics)
they are now a standard component of graphical routines implemented
in hardware.

Department of Mathematics, University of Maryland, College Park,
MD 20742 USA


