MATH 431-2018 PROBLEM SET 1

DUE THURSDAY 6 SEPTEMBER 2018

(1) For each of the following vectors

$$\mathbf{v} = \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 3\\4\\0 \end{bmatrix}, \begin{bmatrix} 0\\5\\6 \end{bmatrix}, \begin{bmatrix} 1\\3\\-1 \end{bmatrix},$$

compute the intersection of the line $\mathbb{R}\mathbf{v}$ with the planes z = 1, the plane x = 1, and the plane x + y + z = 1.

- (2) Compute all the common solutions of the following pairs of (inhomogeneous) linear equations:
 - (a) 3x + 1 = 0, 2y 4 = 0.
 - (b) x + y = 1, x y = 3.
 - (c) x + 3y = 1/2, x/3 + y = 1/6.
 - (d) x + 3y = 1/2, 2x + 6y = -1.
- (3) Compute all nine of the cross-products of the following (standard basic) vectors:

$$\mathbf{i} := \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \qquad \mathbf{j} := \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \qquad \mathbf{k} := \begin{bmatrix} 0\\0\\1 \end{bmatrix}.$$

(4) Consider the three vectors and the 3×3 matrix having the vectors as columns:

$$\mathbf{a} = \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 3\\4\\0 \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 0\\5\\6 \end{bmatrix},$$
$$\mathbf{X} = \begin{bmatrix} \mathbf{a} \quad \mathbf{b} \quad \mathbf{c} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 0\\2 & 4 & 5\\0 & 0 & 6 \end{bmatrix}.$$

- (a) Compute the cross products $\mathbf{a} \times \mathbf{b}$, $\mathbf{b} \times \mathbf{c}$, $\mathbf{c} \times \mathbf{a}$.
- (b) Compute the dot products $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$, $(\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}$, $(\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}$.
- (c) Compute the determinant $\mathsf{Det}(\mathbf{X})$.

(5) Let $\mathbf{v}, \mathbf{w}, \mathbf{u} \in \mathbb{R}^3$ be vectors. Show that both mappings

$$\begin{aligned} & (\mathbf{v},\mathbf{w},\mathbf{u})\longmapsto (\mathbf{v}\times\mathbf{w})\cdot\mathbf{u} \\ & (\mathbf{v},\mathbf{w},\mathbf{u})\longmapsto \mathsf{Det}(\mathbf{v},\mathbf{w},\mathbf{u}) \end{aligned}$$

are alternating, mapping which agree on the standard basis $\mathbf{i}, \mathbf{j}, \mathbf{k}$. Are they equal?

(6) If X is a $m \times n$ matrix, its transpose X^{\dagger} is the $n \times m$ matrix whose rows are the columns of X, and whose columns are the rows of X. A matrix $X \in \mathsf{Mat}_n$ is symmetric if and only if $X = X^{\dagger}$, skew-symmetric if and only if $X = -X^{\dagger}$. It is invertible if it has (necessarily unique) inverse X^{-1} such that $XX^{-1} = X^{-1}X = \mathbf{I}$. It is orthogonal if $XX^{\dagger} = \mathbf{I}$, that is, if $X^{-1} = X^{\dagger}$.

Which of the following matrices are invertible, symmetric, skew-symmetric or orthogonal?

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

(7) Prove that $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible if and only if $\mathsf{Det}(M) := ad - bc$

is *nonzero*. In that case its inverse is:

$$M^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

(8) Let $A \in \mathsf{Mat}_n$ be an *invertible* $n \times n$ matrix. Consider the transformation

$$\begin{aligned} \mathsf{Mat}_n & \stackrel{\phi}{\longrightarrow} \mathsf{Mat}_n \\ X & \longmapsto AXA^{-1} \end{aligned}$$

- (a) Suppose that $X, Y \in \mathsf{Mat}_n$ and $s \in \mathbb{R}$. Show that: (i) $\phi(X+Y) = \phi(X) + \phi(Y)$.
 - (ii) $\phi(sX) = s\phi(X)$.
 - (iii) $\phi(XY) = \phi(X)\phi(Y)$.
- (b) For another invertible matrix B, define:

$$\begin{aligned} \mathsf{Mat}_n & \stackrel{\psi}{\longrightarrow} \mathsf{Mat}_n \\ X & \longmapsto BXB^{-1} \end{aligned}$$

Show that the composition $\phi \circ \psi$ maps $X \longmapsto CXC^{-1}$ for some invertible C. Compute C and C^{-1} in terms of A, B and their inverses.

 $\mathbf{2}$

MATH431-1

(9) For which of the following matrices A does $A^2 = -\mathbf{I}$ (where \mathbf{I} denotes the identity matrix)?

(a)
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
,
(b) $\begin{bmatrix} 0 & 1/2 \\ -2 & 0 \end{bmatrix}$,
(c) $\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$,
(d) $\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$,
(e) $\begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$

(10) For each integer $n \ge 0$, determine a(n), b(n), c(n), d(n) where:

$$\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}^n = \begin{bmatrix} a(n) & b(n) \\ c(n) & d(n) \end{bmatrix}$$

 $\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} a(n) & b(n) \\ c(n) & d(n) \end{bmatrix}$ (Hint: first do the case for the diagonal matrix $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.) (11) Let

$$M := \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \mathbf{J} := \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

(a) Determine the condition that $M\mathbf{J} = \mathbf{J}M$ in terms of a, b, c, d.

(b) Relate the matrix $M^{\dagger} \mathbf{J} M$ to $\mathsf{Det}(M)$.

•

(12) Let α, β be linear transformations $\mathbb{R}^2 \to \mathbb{R}^2$ defined by matrices

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix},$$

respectively. Compute the matrices AB and BA and the compositions $\alpha \circ \beta$ and $\beta \circ \alpha$. Identify which composition corresponds to AB and which composition corresponds to BA.

(13) Let
$$\mathbf{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \in \mathbb{R}^3$$
 be an arbitrary vector in \mathbb{R}^3 .

Which of the following functions $\mathbb{R}^3 \xrightarrow{f} \mathbb{R}$ are *covectors*, that is, linear functionals? For each covector, write down the row vector ϕ to which it corresponds (that is,

$$f(\mathbf{v}) = \phi \mathbf{v} = \phi^{\dagger} \cdot \mathbf{v},$$

matrix multiplication of the row vector ϕ by the column **v**.

- (a) f(x, y, z) = x + 1;(b) f(x, y, z) = y;(c) f(x, y, z) = x - z;(d) f(x, y, z) = xy;(e) $f(x, y, z) = x + y + e^{z}.$ (f) f(x, y, z) = x + y + z.
- (14) Which of the following functions $\mathbb{R}^2 \times \mathbb{R}^2 \xrightarrow{B} \mathbb{R}$ are *bilinear*? For those, find the corresponding 2×2 matrix \mathcal{B} such that

$$B(\mathbf{v},\mathbf{w}) = \mathbf{v}^{\dagger} \mathcal{B} \mathbf{w}.$$

(a)
$$B(\mathbf{v}, \mathbf{w}) = v_1 w_2 - v_2 w_1;$$

(b) $B(\mathbf{v}, \mathbf{w}) = v_1 w_1;$
(c) $B(\mathbf{v}, \mathbf{w}) = v_1 (w_1)^2;$
(d) $B(\mathbf{v}, \mathbf{w}) = v_1 v_2;$
(e) $B(\mathbf{v}, \mathbf{w}) = v_1 w_1 + 2v_2;$
(f) $B(\mathbf{v}, \mathbf{w}) = v_1 w_1 + w_2 v_2;$
(g) $B(\mathbf{v}, \mathbf{w}) = v_1 + 1;$
(h) $B(\mathbf{v}, \mathbf{w}) = v_1 - w_1.$

4