MATH 431-2018 PROBLEM SET 2

DUE THURSDAY 20 SEPTEMBER 2018

(1) Find all the (possibly) complex solutions of the following equations:

$$
z^{2}+1=0, \quad z^{2}-2 z+2=0, \quad z^{3}+1=0
$$

(2) We explore the relationship between the real vector space \mathbb{R}^{2} and the field \mathbb{C} of complex numbers. We first write complex numbers $z, w \in \mathbb{C}$ in terms of their real and imaginary parts x, y and u, v, respectively (where $x, y, u, v \in \mathbb{R}$):

$$
\begin{array}{ll}
\mathbf{z}=\left[\begin{array}{l}
x \\
y
\end{array}\right], & z=x+i y \\
\mathbf{w}=\left[\begin{array}{l}
u \\
v
\end{array}\right], & w=u+i v
\end{array}
$$

That is, \mathbf{z}, \mathbf{w} are vectors in \mathbb{R}^{2} and z, w are the corresponding complex scalars. We write $\Phi(z)=\mathbf{z}$ and $\Phi(w)=\mathbf{w}$, where

$$
\mathbb{C} \xrightarrow{\Phi} \mathbb{R}^{2}
$$

is an isomorphism of real vector spaces. Φ takes the usual basis $(1, i)$ of \mathbb{C} to the coordinate basis of \mathbb{R}^{2} :

$$
\begin{aligned}
& 1 \stackrel{\Phi}{\longmapsto}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& i \stackrel{\Phi}{\longmapsto}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

(a) Express the vector $\operatorname{sum} \mathbf{z}+\mathbf{w}$, the dot product $\mathbf{z} \cdot \mathbf{w}$ and

$$
\mathbf{z} \wedge \mathbf{w}=\operatorname{Det}(\mathbf{z}, \mathbf{w})=\operatorname{Det}\left[\begin{array}{ll}
x & u \\
y & v
\end{array}\right]:=\left|\begin{array}{ll}
x & u \\
y & v
\end{array}\right|
$$

in terms of the complex numbers z, w, \bar{z}, \bar{w} and complex addition and multiplication.
(b) Multiplication by z is a linear map $\mathbb{C} \xrightarrow{\text { Mult }_{z}} \mathbb{C}^{2}$. Express Mult $_{z}$ as a 2×2 matrix $M_{z} \in$ Mat $_{2}$.
(c) Express $\operatorname{Det}\left(M_{z}\right)$ in terms of z and \bar{z}, and in terms of the absolute value (or length or magnitude) $|z|$.
(d) Prove that if $z \in \mathbb{C}$ is nonzero, then z^{-1} exists. That is, there is some $w \in \mathbb{C}$ such that $z w=w z=1$. Show that w is uniqu.
(e) Show that matrix $M_{z^{-1}}$ corresponding to $z^{-1} \in \mathbb{C}$ is the inverse of the matrix M_{z} corresponding to z.
(f) What is Φ^{-1} ?
(g) Relate the composition $\Phi \circ \mathbf{M u l t}_{z} \circ \Phi^{-1}$ to M_{z}.
(3) Use Euler's formula

$$
e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

to prove the addition formulas in trigonometry:

$$
\begin{aligned}
\cos (\alpha+\beta) & =\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \\
\sin (\alpha+\beta) & =\cos (\alpha) \sin (\beta)+\sin (\alpha) \cos (\beta)
\end{aligned}
$$

from the law of exponents:

$$
e^{x+y}=e^{x} e^{y}
$$

Interpret the complex product $e^{i \alpha} e^{i \beta}$ as a matrix product.
(4) Prove that the set of translations forms a transformation group:
(5) Which of the following $\mathbb{E}^{2} \xrightarrow{T} \mathbb{E}^{2}$ are isometries? Which are affine? Determine which ones preserve or reverse orientation.
(a) $T(x, y)=(x, y+1)$.
(b) $T(x, y)=(x+x y, y-x)$.
(c) $T(x, y)=(y, x)$.
(d) $T(x, y)=(3 x, 4 y)$
(e) $T(x, y)=(3 x,-4 y)$
(f) $T(x, y)=(-3 x,-4 y)$
(g) $T(x, y)=(4 / 5 x-3 / 5 y, 3 / 5 x+4 / 5 y-6)$.
(h) $T(x, y)=(4 / 5 x-3 / 5 y, 4 / 5 x-3 / 5 y-6)$.
(6) For which complex numbers $\zeta, \xi \in \mathbb{C}$ is the mapping $z \longmapsto \zeta z+\xi$ an isometry? For which $\zeta \in \mathbb{C}$ is the mapping $z \longmapsto \zeta \bar{z}+\xi$ an isometry?

