MATH 431-2018 PROBLEM SET 3

DUE THURSDAY 20 SEPTEMBER 2018

(1) (Midpoints)
(a) Let p, q be points in Euclidean space \mathbb{E}^{n}. The midpoint $\operatorname{mid}(p, q)$ of a line segment $\overline{p q}$ (in Euclidean geometry) is defined as the unique point $r \in \overleftrightarrow{p q}$ such that $d(p, r)=$ $d(q, r)$. Define $\operatorname{mid}(p, q) \overline{p q}$ in affine geometry: that is, just in terms of translations, parallelism, etc. but not involving distance.
(b) In terms of affine coordinates (where p, q are represented by vectors in \mathbb{R}^{n}), find a formula for $\operatorname{mid}(p, q)$.
(2) (Affine combinations)

Vectors in a vector space can be added. How can we do this in an affine space?

If $p_{0}, p_{1}, \ldots, p_{k} \in \mathbb{A}^{n}$ are $k+1$ points in affine space, and $t_{0}, t_{1}, \ldots t_{k} \in \mathbb{R}$ scalars such that

$$
\begin{equation*}
t_{0}+t_{1}+\ldots t_{k}=1 \tag{1}
\end{equation*}
$$

we define an affine combination $\sum_{i=0}^{n} t_{i} p_{i}$ as follows.
Choose a point $O \in \mathbb{A}^{n}$ to be used as the origin and for each $j=0, \ldots, k$, let τ_{j} be the translation taking p_{j} to O. Then $\tau_{j}\left(p_{i}\right)$ is a vector in \mathbb{R}^{n} (and when $i=j$, the zero vector $\mathbf{0}$). Thus it makes sense to form the linear combination (a vector)

$$
\sum_{i=0}^{k} t_{i} \tau_{j}\left(p_{i}\right) \in \mathbb{R}^{n}
$$

and then translate O by this vector (apply the translation $\left(\tau_{j}\right)^{-1}$) to obtain a point which we denote

$$
\sum_{i=0}^{k} t_{i} p_{i} \in \mathbb{A}^{n}
$$

(a) Show that ${ }^{(j)} \sum_{i=0}^{k} t_{i} p_{i}$ is independent of j, so we denote this just by $\sum_{i=0}^{k} t_{i} p_{i}$.
(b) Show that if g is an affine transformation, then

$$
g\left(\sum_{i=0}^{k} t_{i} p_{i}\right)=\sum_{i=0}^{k} t_{i} g\left(p_{i}\right)
$$

(c) Does this characterize affine maps?
(d) An alternative approach is to use the linearization of affine spaces as follows. Represent \mathbb{A}^{n} as the hyperplane $\mathbb{R}^{n} \times\{1\}$ in the Cartesian product $\mathbb{A}^{n} \times \mathbb{R}$. (More accurately, \mathbb{A}^{n} identifies with $\mathbb{R}^{n} \oplus\{1\}$ in the direct sum $\mathbb{R}^{n} \oplus \mathbb{R} \cong \mathbb{R}^{n+1}$. Then an affine map $g=[A \mid \mathbf{b}]$ (that is, with linear part $A \in \operatorname{Mat}_{n}(\mathbb{R})$ and translational part $\left.\mathbf{b} \in \mathbb{R}^{n}\right)$ is represented by the $(n+1)$-square matrix

$$
\left[\begin{array}{cc}
A & \mathbf{b} \\
0 \ldots 0 & 1
\end{array}\right] .
$$

which preserves the hyperplane \mathbb{A}^{n} with last ($n+1$-th) coordinate equal to 1 .
(e) If p_{0}, \ldots, p_{k} respectively correspond to vectors $\mathbf{p}_{0}, \ldots, \mathbf{p}_{k} \in$ $\mathbb{R}^{n} \times\{1\}$ in this hyperplane, that is:

$$
\mathbf{p}=\left[\begin{array}{l}
p \\
1
\end{array}\right],
$$

then the usual linear combination $\sum_{i=0}^{k} t_{i} \mathbf{p}_{i}$ of vectors corresponds to the point $\sum_{i=0}^{k} t_{i} p_{i}$.
(f) Explain why condition (1) is necessary.
(3) Using the affine patch

$$
\begin{aligned}
\mathbb{A}^{2} & \hookrightarrow \mathbb{P}^{2} \\
(x, y) & \longmapsto[x: y: 1]
\end{aligned}
$$

which of the following sets of homogeneous coordinates represent the point $(0.2,-0.5) \in \mathbb{A}^{2}$?
(a) $[0.2:-0.5: 0]$
(b) $[2:-5: 1]$
(c) $[-4: 10: 2]$
(d) $[5: 2: 1]$
(e) $[-0.2: 0.5:-1]$
(4) Which of the following triples of homogeneous coordinates define a set of three collinear points in \mathbb{P}^{2} ? For those ones, find the homogeneous coordinates for the line containing them.
(a) $[0.2:-0.5: 0], \quad[1: 3: 0], \quad[2: 7: 0]$
(b) $[0.2:-0.5: 0], \quad[1: 3: 0], \quad[2: 7: 1]$
(c) $[1: 2:-3], \quad[-1: 1: 0],[0: 4:-4]$
(d) $[1: 1: 1], \quad[1: 1:-1], \quad[4: 4: 1]$
(e) $[1: 1: 1], \quad[1: 1:-1], \quad[1: 4: 4]$
(5) Here are four affine patches:

$$
\begin{aligned}
& \mathbb{A}^{2} \xrightarrow[\mathcal{A}_{1}]{\longrightarrow} \mathbb{P}^{2} \\
&(y, z) \longmapsto[1: y: z] \\
& \mathbb{A}^{2} \xrightarrow[\mathcal{A}_{2}]{\longrightarrow} \mathbb{P}^{2} \\
&(x, z) \longmapsto[x: 1: z] \\
& \mathbb{A}^{2} \xrightarrow{\mathcal{A}_{3}} \mathbb{P}^{2} \\
&(x, y) \longmapsto[x: y: 1] \\
& \mathbb{A}^{2} \xrightarrow[\mathcal{A}_{4}]{\longrightarrow} \mathbb{P}^{2} \\
&(u, v) \longmapsto[u+1: u-v: u+v]
\end{aligned}
$$

(a) Find an ideal point for each of these affine patches.
(b) Find the affine coordinates of the point $[1: 2: 3]$ in terms of these three affine patches. That is, compute $\mathcal{A}_{i}^{-1}([1: 2$: 3]) for $i=1,2,3,4$.
(c) Let P be the parabola

$$
\left\{(x, y) \in \mathbb{A}^{2} \mid y=x^{2}\right\}
$$

and consider the closure C of $\mathcal{A}_{3}(P) \subset \mathbb{P}^{2}$. Express C in homogeneous coordinates.
(d) Does P have an ideal point?
(e) Determine $\left(\mathcal{A}_{i}\right)^{-1}(C)$ for $i=2,3,4$ and their ideal points (if any).

