MATH 431-2018 PROBLEM SET 3

DUE THURSDAY 20 SEPTEMBER 2018

- (1) (Midpoints)
 - (a) Let p, q be points in Euclidean space \mathbb{E}^n . The midpoint $\operatorname{mid}(p,q)$ of a line segment \overline{pq} (in Euclidean geometry) is defined as the unique point $r \in \overrightarrow{pq}$ such that d(p,r) = d(q,r). Define $\operatorname{mid}(p,q) \ \overline{pq}$ in affine geometry: that is, just in terms of translations, parallelism, etc. but not involving distance.
 - (b) In terms of affine coordinates (where p, q are represented by vectors in \mathbb{R}^n), find a formula for $\mathsf{mid}(p, q)$.
- (2) (Affine combinations)

Vectors in a vector space can be added. How can we do this in an affine space?

If $p_0, p_1, \ldots, p_k \in \mathbb{A}^n$ are k + 1 points in affine space, and $t_0, t_1, \ldots, t_k \in \mathbb{R}$ scalars such that

(1)
$$t_0 + t_1 + \dots t_k = 1,$$

we define an *affine combination* $\sum_{i=0}^{n} t_i p_i$ as follows.

Choose a point $O \in \mathbb{A}^n$ to be used as the *origin* and for each $j = 0, \ldots, k$, let τ_j be the translation taking p_j to O. Then $\tau_j(p_i)$ is a vector in \mathbb{R}^n (and when i = j, the zero vector **0**). Thus it makes sense to form the linear combination (a vector)

$$\sum_{i=0}^{k} t_i \tau_j(p_i) \in \mathbb{R}^n$$

and then translate O by this vector (apply the translation $(\tau_j)^{-1}$) to obtain a point which we denote

$$^{(j)}\sum_{i=0}^{k}t_{i}p_{i} \in \mathbb{A}^{n}.$$

- (a) Show that ${}^{(j)}\sum_{i=0}^{k} t_i p_i$ is independent of j, so we denote this just by $\sum_{i=0}^{k} t_i p_i$.
- (b) Show that if g is an affine transformation, then

$$g\left(\sum_{i=0}^{k} t_i p_i\right) = \sum_{i=0}^{k} t_i g(p_i).$$

20 SEPTEMBER 2018

- (c) Does this characterize affine maps?
- (d) An alternative approach is to use the *linearization* of affine spaces as follows. Represent \mathbb{A}^n as the hyperplane $\mathbb{R}^n \times \{1\}$ in the Cartesian product $\mathbb{A}^n \times \mathbb{R}$. (More accurately, \mathbb{A}^n identifies with $\mathbb{R}^n \oplus \{1\}$ in the *direct sum* $\mathbb{R}^n \oplus \mathbb{R} \cong \mathbb{R}^{n+1}$. Then an affine map $g = [A \mid \mathbf{b}]$ (that is, with linear part $A \in \mathsf{Mat}_n(\mathbb{R})$ and translational part $\mathbf{b} \in \mathbb{R}^n$) is represented by the (n + 1)-square matrix

$$\begin{bmatrix} A & \mathbf{b} \\ 0 \dots 0 & 1 \end{bmatrix}.$$

which preserves the hyperplane \mathbb{A}^n with last (n + 1-th) coordinate equal to 1.

(e) If p_0, \ldots, p_k respectively correspond to vectors $\mathbf{p}_0, \ldots, \mathbf{p}_k \in \mathbb{R}^n \times \{1\}$ in this hyperplane, that is:

$$\mathbf{p} = \begin{bmatrix} p \\ 1 \end{bmatrix},$$

then the usual linear combination $\sum_{i=0}^{k} t_i \mathbf{p}_i$ of vectors corresponds to the point $\sum_{i=0}^{k} t_i p_i$.

- (f) Explain why condition (1) is necessary.
- (3) Using the affine patch

$$\mathbb{A}^2 \hookrightarrow \mathbb{P}^2 (x, y) \longmapsto [x : y : 1]$$

which of the following sets of homogeneous coordinates represent the point $(0.2, -0.5) \in \mathbb{A}^2$?

- (a) [0.2:-0.5:0](b) [2:-5:1](c) [-4:10:2](d) [5:2:1](e) [-0.2:0.5:-1]Which of the following
- (4) Which of the following triples of homogeneous coordinates define a set of three collinear points in \mathbb{P}^2 ? For those ones, find the homogeneous coordinates for the line containing them.

 $\mathbf{2}$

(5) Here are four affine patches:

$$\mathbb{A}^{2} \xrightarrow{\mathcal{A}_{1}} \mathbb{P}^{2}$$

$$(y, z) \longmapsto [1:y:z]$$

$$\mathbb{A}^{2} \xrightarrow{\mathcal{A}_{2}} \mathbb{P}^{2}$$

$$(x, z) \longmapsto [x:1:z]$$

$$\mathbb{A}^{2} \xrightarrow{\mathcal{A}_{3}} \mathbb{P}^{2}$$

$$(x, y) \longmapsto [x:y:1]$$

$$\mathbb{A}^{2} \xrightarrow{\mathcal{A}_{4}} \mathbb{P}^{2}$$

$$(u, v) \longmapsto [u+1:u-v:u+v]$$

- (a) Find an ideal point for each of these affine patches.
- (b) Find the affine coordinates of the point [1:2:3] in terms of these three affine patches. That is, compute $\mathcal{A}_i^{-1}([1:2:3])$ for i = 1, 2, 3, 4.
- (c) Let P be the parabola

$$\{(x,y) \in \mathbb{A}^2 \mid y = x^2\}$$

and consider the closure C of $\mathcal{A}_3(P) \subset \mathbb{P}^2$. Express C in homogeneous coordinates.

- (d) Does P have an ideal point?
- (e) Determine $(\mathcal{A}_i)^{-1}(C)$ for i = 2, 3, 4 and their ideal points (if any).