MATH 431-2018 PROBLEM SET 4

DUE THURSDAY 18 OCTOBER 2018
(1) (An invariant of similarity)
(a) Let $z_{0}, z_{1}, z \in \mathbb{C}$ be three distinct complex numbers. They represent the vertices of a triangle

$$
\Delta=\Delta\left(z, z_{1}, z_{0}\right) \subset \mathbb{C} \cong \mathbb{E}^{2}
$$

Define

$$
\mathbb{A}(\Delta)=\mathbb{A}\left(z, z_{1}, z_{0}\right):=\frac{z-z_{0}}{z_{1}-z_{0}}
$$

Show that if f is an orientation-preserving similarity transformation, then

$$
\mathbb{A}(f(\Delta))=A(\Delta)
$$

and if f is an orientation-reversing similarity transformation, then

$$
\mathbb{A}(f(\Delta))=\overline{A(\Delta)}
$$

(b) Show that $\mathbb{A}(z, 1,0)=z$.
(c) Show that if Δ, Δ^{\prime} are two triangles as above and

$$
\mathbb{A}(\Delta)=\mathbb{A}\left(\Delta^{\prime}\right)
$$

then there is a unique orientation-preserving similarity transformation f such that $\Delta^{\prime}=f(\Delta)$.
(d) (Effect of permutations) Call $\mathbb{A}\left(z, z_{1}, z_{0}\right)=\zeta$. Express $\mathbb{A}\left(z, z_{0}, z_{1}\right.$ and $\mathbb{A}\left(z_{1}, z, z_{0}\right)$ as functions of ζ. Do the same for $\mathbb{A}\left(z_{0}, z_{1}, z\right), \mathbb{A}\left(z_{0}, z, z_{1}\right)$ and $\mathbb{A}\left(z_{1}, z_{0}, z\right)$.
(e) Characterize the midpoint in terms of the invariant \mathbb{A}.
(f) Let $A=\mathbb{A}\left(z, z_{1}, z_{0}\right)$. Express z as an affine combination of z_{0} and z_{1}, that is, prove:

$$
z=(1-A) z_{0}+A z_{1}
$$

(2) (Stereographic projection)
(a) Let \mathbb{S} be the sphere centered at $(0,0,1)$ with radius 1 and let

$$
N=(0,0,2), S=(0,0,0) \in \mathbb{S}
$$

be the north and south pole respectively. Use the usual coordinates (x, y) on the $x y$-plane $z=0$ to identify it with \mathbb{E}^{2}. Show that given for any point $p \in \mathbb{S} \backslash\{N\}$, the (unique) line from N to p meets \mathbb{E}^{2} in a unique point $\Sigma(p)$.
(b) Show that Σ defines a homeomorphism

$$
\mathbb{S} \backslash\{N\} \xrightarrow{\Sigma} \mathbb{E}^{2}
$$

and compute its inverse.
(c) A great circle on \mathbb{S} is the intersection of \mathbb{S} with an affine plane passing through its center. Show that if $C \subset \mathbb{S}$ is a great circle passing through N, then $\Sigma(C)$ is a Euclidean line passing through the origin $O \in \mathbb{E}^{2}$ (the point corresponding to the zero complex number $0 \in \mathbb{C})$.
(d) The equator E on $S s$ is defined by $z=1$. What is $\Sigma(E)$?
(e) Show that other not-so-great circles on \mathbb{S} map to lines \mathbb{E}^{2} not passing through O.
(f) Show that any circle on \mathbb{S} not containing N maps to a circle in \mathbb{E}^{2}.
(g) Let $\iota(\zeta)=|\zeta|^{-2} \zeta$ be inversion in the unit circle in $\mathbb{E}^{2} \longleftrightarrow$ \mathbb{C}. What is the transformation of \mathbb{S} defined by $\Sigma^{-1} \circ \iota \circ \Sigma$?
(h) What does N correspond to under Σ ?
(3) On Thursday 27 September we proved that inversion ι in the unit circle U takes the circle $C(z, r)$ centered at z with radius r to the circle $C\left(z^{\prime}, r^{\prime}\right)$ whose center and radius are:

$$
\begin{equation*}
z^{\prime}=\frac{z}{|z|^{2}-r^{2}}, \quad r^{\prime}=\frac{r}{\left||z|^{2}-r^{2}\right|} \tag{1}
\end{equation*}
$$

This is, of course, assuming that $|z| \neq r$. Otherwise $C(z, r) \ni 0$ and since $\iota(0)=\infty$, the circle $C\left(z^{\prime}, r^{\prime}\right)=\iota C(z, r)$ is a line. Show that the point on the line $C\left(z^{\prime}, r^{\prime}\right) \backslash\{\infty\}$ closest to the origin equals $\iota(z) / 2$. What happens when $C\left(z^{\prime}, r^{\prime}\right) \ni 0$?

Derivation of formula (1)

Inversion is defined by $\iota(\zeta)=1 / \bar{\zeta}$, and the metric circle by:

$$
\begin{aligned}
C(z, r) & :=\{\zeta \in \mathbb{C}| | \zeta-z \mid=r\} \\
& =\left\{\zeta \left|\zeta \bar{\zeta}=\left||\zeta-z|^{2}=r^{2}\right\}\right.\right.
\end{aligned}
$$

Changing variables with $\omega=\iota(\zeta)$ and using the fact that $\zeta=\iota(\omega)$:

$$
\begin{aligned}
\iota(C(z, r)) & :=\left\{\omega \in \mathbb{C} \mid \iota(\omega) \iota \overline{\iota(\omega)}-r^{2}\right\} \\
& =\left\{\omega \mid(1 / \bar{\omega}-z)(/ \omega-z)-r^{2}=0\right\} \\
& =\left\{\omega \mid(1-z \bar{\omega})(1-z \omega)-\omega \bar{\omega} r^{2}=0\right\}
\end{aligned}
$$

Now expand and collect as a polynomial in ω and $\bar{\omega}$:

$$
(1-z \bar{\omega})(1-z \omega)-\omega \bar{\omega} r^{2}=\left(|z|^{2}-r^{2}\right) \omega \bar{\omega}-\bar{z} \omega-z \bar{\omega}+1
$$

and divide by $|z|^{2}-r^{2}$:

$$
\begin{aligned}
(\omega- & \left.\frac{z}{|z|^{2}-r^{2}}\right)\left(\bar{\omega}-\frac{\bar{z}}{|z|^{2}-r^{2}}\right) \\
& -\frac{|z|^{2}}{\left(|z|^{2}-r^{2}\right)^{2}}+\frac{1}{|z|^{2}-r^{2}} \\
= & \left|\omega-\frac{z}{|z|^{2}-r^{2}}\right|-\frac{r^{2}}{\left(|z|^{2}-r^{2}\right)^{2}} \\
= & \left|\omega-z^{\prime}\right|^{2}-r^{\prime 2}
\end{aligned}
$$

Thus $\iota(C(z, r))=C\left(z^{\prime}, r^{\prime}\right)$ as claimed.

