MATH 431-2018 PROBLEM SET 6

DECEMBER 2, 2018
DUE TUESDAY 11 DECEMBER 2018

1. Rotations and quaternions

Consider the line ℓ through $p_{0}:=(1,0,0)$ and parallel to the vector

$$
\mathbf{v}:=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

that is, defined implicitly by $x-1=y=z$. How do you find the rotation $\operatorname{Rot}_{\ell}(\theta)$ about ℓ through angle θ ?
(1) Let $\ell_{O}:=\mathbb{R} \mathbf{v}$ be the line $x=y=z$ parallel to ℓ and passing through the point O (the "origin") corresponding to the zero vector $\mathbf{0} \in \mathbb{R}^{3}$. Given the rotation $\operatorname{Rot}_{\mathbf{v}}(\theta)$ about ℓ_{O} through angle θ, $\operatorname{compute}^{\operatorname{Rot}}(\theta)$.
(2) $\operatorname{Rot}_{\mathbf{v}}(\theta)$ can be computed in several ways. The quaternionic formula

$$
w \stackrel{\operatorname{Rot}_{v}(\theta)}{\longmapsto} \exp \left(\frac{\theta}{2} v\right) w \exp \left(-\frac{\theta}{2} v\right),
$$

where $v \in \mathbb{H}_{0} \cong \mathbb{R}^{3}$ is the purely imaginary quaternion corresponding to the vector \mathbf{v}, and $w \in \mathbb{H}_{0}$ corresponds to an arbitrary vector in \mathbb{R}^{3}. Use this formula to compute $\operatorname{Rot}_{\ell}(\theta)$.
(3) Another approach involves finding a rotation ρ which takes the unit vector $\frac{1}{\sqrt{3}} \mathbf{v}$ to a fixed unit vector, say \mathbf{i}, and then conjugating $\operatorname{Rot}_{\mathbf{i}}(\theta)$ by ρ. Find a rotation which takes $\frac{1}{\sqrt{3}} \mathbf{v}$ to \mathbf{i}.
Here are some more problems about quaternions:
(4) Find all quaternion solutions $x \in \mathbb{H}$ of $x^{2}=2$.
(5) Find all quaternion solutions $x \in \mathbb{H}$ of $x^{2}=-2$.
(6) Prove or disprove: If $x \in \mathbb{H}$ is a quaternion, then $\exp (t x)$ is real for all $t \in \mathbb{R}$, then x is real.
(7) Prove or disprove: If $x \in \mathbb{H}$ is a quaternion, then $\exp (t x)$ is real for some nonzero $t \in \mathbb{R}$, then x is real.

2. Quadrics

2.1. Three Types of Unruled Quadrics. Define the ellipsoid, elliptic paraboloid, and two-sheeted hyperboloid:

$$
\begin{aligned}
E_{a, b, c} & :=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\,\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}+\left(\frac{z}{c}\right)^{2}=1\right.\right\} \\
P_{a, b} & :=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\,\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}=z\right.\right\} \\
H_{a, b, c} & :=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\,\left(\frac{x}{a}\right)^{2}+\left(\frac{y}{b}\right)^{2}-\left(\frac{z}{c}\right)^{2}=-1\right.\right\}
\end{aligned}
$$

where $a, b, c \neq 0$ (they are usually taken to be positive). Visualize these surfaces.

In projective space \mathbb{P}^{3} define the quadric

$$
Q:=\left\{[X: Y: Z: W] \in \mathbb{P}^{3} \mid X^{2}+Y^{2}+Z^{2}=W^{2}\right\} .
$$

(1) In the usual affine patch $(x, y, z) \longmapsto[x: y: z: 1]$, find the ideal points of $E_{a, b, c}, P_{a, b}, H_{a, b, c}$.
(2) Find three affine patches \mathcal{A} into \mathbb{P}^{3} such that $E_{a, b, c}, P_{a, b}$ and $H_{a, b, c}$ are each $\mathcal{A}^{-1}(Q)$. (Hint: use the formulas $\left.a^{2}-b^{2}=(a-b)(a+b), \quad 4 a b=(a+b)^{2}-(a-b)^{2}.\right)$
(3) (Bonus problem) Prove or disprove: The affine patch $E_{a, b, c} \longrightarrow$ Q is a homeomorphism. (Recall that a homeomorphism is a continuous bijection whose inverse is continuous. In other words, it is a mapping which preserves the topology, the way the points are "organized" into a space. It can stretch, squeeze and otherwise distort the geometry, but it can't tear, collapse or break the space. Being continuous means preserving the underlying "topological fabric.")
(4) (Bonus problem) Find a homeomorphism of $E_{a, b, c} \longrightarrow S^{2}$ where S^{2} is the 2-dimensional sphere (the unit sphere in \mathbb{R}^{3}.
2.2. Surfaces of revolution and cylindrical coordinates. A surface of revolution is a surface obtained by rotating a plane curve about a straight line in that plane. A simple example is revolving a line about a parallel line to obtain a cylinder. To fix notation, let $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ be a point in the $x y$-plane. To obtain a cylinder, rotate the line $\ell_{(1,0)}$ about the z-axis $\ell_{(0,0)}$: rotation through angle angle θ takes $\ell_{1,0}$ to the line $\ell_{(\cos (\theta), \sin (\theta))}$ and the cylinder equals $\left\{x^{2}+y^{2}=1\right\}$.
(5) Express the ellipsoid $E_{1,1, c}$ and the paraboloid $P_{1,1}$ as surfaces of revolution.
(6) How is the cone $\left\{x^{2}+y^{2}=z^{2}\right\}$ a surface of revolution?
(7) Define cylindrical coordinates (r, θ, z) on \mathbb{E}^{3} by

$$
\begin{aligned}
r & :=\sqrt{x^{2}+y^{2}} \\
\theta & :=\tan ^{-1}(y / x) \\
z & :=z
\end{aligned}
$$

and

$$
\begin{aligned}
x & :=r \cos (\theta) \\
y & :=r \sin (\theta) \\
z & :=z .
\end{aligned}
$$

Express the above surfaces in cylindrical coordinates.
(8) (Bonus problem) Prove or disprove: Every surface defined implicitly by an equation $f(r, z)=0$ is a surface of revolution about the z-axis.
2.3. Ruled Quadrics. Sometimes quadrics contain straight lines. Then the quadric is said to be ruled. In that case the quadric corresponds to the surface in projective space:

$$
Q^{\prime}:=\left\{[X: Y: Z: W] \in \mathbb{P}^{3} \mid X^{2}+Y^{2}=Z^{2}+W^{2}\right\}
$$

A simple example is the hyperbolic paraboloid or saddle:

$$
S^{\prime}:=\{(x, y, z) \mid x y=z\}
$$

The intersection of S^{\prime} with the $x y$-plane $z=0$ is defined by $x y=z=0$, which decomposes as the union of two lines: the y-axis $x=z=0$ and the x-axis $y=z=0$.
(9) For any point $p_{0}=\left(x_{0}, y_{0}, x_{0} y_{0}\right)$, find two lines through the point and lying on S. (Hint compute the tangent plane to S at p_{0}. In the preceding example, what is the relation between S, the origin $(0,0,0)$ and the $x y$-plane?)
(10) Find an affine patch \mathcal{A} such that $S=\mathcal{A}^{-1}\left(Q^{\prime}\right)$.
(11) Find a set of affine coordinates (u, v, w) so that S is given by the equation

$$
w=u^{2}-v^{2} .
$$

Another example is the one-sheeted hyperboloid:

$$
H^{\prime}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=1\right\}
$$

which is a surface of revolution in several different ways. ls In the usual affine patch

$$
\mathcal{A}(x, y, z)=[x: y: z: 1]
$$

(with viewing hyperplane $W=1$), $H^{\prime}=\mathcal{A}^{-1}\left(Q^{\prime}\right)$. Notice that it is invariant under the one-parameter group of rotations about the z-axis:

$$
\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]=\exp \left[\begin{array}{ccc}
0 & -\theta & 0 \\
\theta & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

H^{\prime} is obtained by revolving the hyperbola

$$
y^{2}-z^{2}-1=x=0
$$

around the z-axis.
(12) Write H^{\prime} in cylindrical coordinates.
(13) Find the ideal points of Q^{\prime} in the affine patch \mathcal{A}.
(14) For each $\theta \in \mathbb{R}$ representing an angle (that is, only defined modulo 2π),

$$
\ell_{\theta}^{ \pm}:=\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta) \\
0
\end{array}\right]+\mathbb{R}\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
\pm 1 \\
1
\end{array}\right]
$$

determines two lines (from different choices \pm) which lie on H^{\prime}.
(15) one of these lines about the z-axis.

These families of lines are called rulings and this quadric is ruled in two different ways.

Similarly, this quadric is a surface of revolution in two different ways. Try making a model of H^{\prime} out of string and two flat circular (or elliptical) rings.
2.4. Topology of a ruled quadric. The projective surface Q^{\prime} is actually a torus, a surface homeomorphic to a a bagel, doughnut, or inner tube. This can be seen as follows. Write the equation defining Q^{\prime} in the form

$$
X^{2}+Y^{2}=Z^{2}+W^{2}
$$

and note that this quantity is positive. (Being a sum of squares it is always nonnegative, and if it is zero, then $X^{2}+Y^{2}=Z^{2}+W^{2}=0$, which implies $X=Y=Z=W=0$, a contradiction.) By scaling the homogeneous coordinates, we can assume that $X^{2}+Y^{2}=1$ and $Z^{2}+W^{2}=1$, and equation defines a pair of circles (one in the $X, Y-$ plane and the other in the Z, W-plane).

Here is an explicit formula. Let $\theta, \phi \in \mathbb{R}$ represent angles (so they are only defined modulo 2π). Write

$$
\begin{array}{cl}
X_{\theta}:=\cos (\theta) X-\sin (\theta) Y & Y_{\theta}:=\sin (\theta) X+\cos (\theta) Y \\
Z_{\phi}:=\cos (\phi) Z-\sin (\phi) W & W_{\phi}:=\sin (\phi) Z+\cos (\phi) W
\end{array}
$$

and note that

$$
X_{\theta}^{2}+Y_{\theta}^{2}=X^{2}+Y^{2} \quad Z_{\phi}^{2}+W_{\phi}^{2}=Z^{2}+W^{2}
$$

This will enable us to understand the topology.
Let $T \subset \mathbb{R}^{4}$ denote the subset defined by

$$
X^{2}+Y^{2}=Z^{2}+W^{2}=1
$$

Prove or disprove the following statements.
(16) (Bonus problem) The map

$$
\begin{aligned}
& S^{1} \times S^{1} \longrightarrow \\
&(\theta, \phi) \longmapsto \mathbb{R}^{4} \\
& {\left[\begin{array}{l}
\cos (\theta) \\
\sin (\theta) \\
\cos (\phi) \\
\sin (\phi)
\end{array}\right] }
\end{aligned}
$$

is a homeomorphism (a topological equivalence).
(17) (Bonus problem) The map

$$
\begin{aligned}
S^{1} \times S^{1} & \longrightarrow Q^{\prime} \subset \mathbb{P}^{3} \\
(\theta, \phi) & \longmapsto[\cos (\theta): \sin (\theta): \cos (\phi): \sin (\phi)]
\end{aligned}
$$

is a homeomorphism (Hint: Look at what happens to (π, π).)
(18) (Bonus problem) Q^{\prime} is homeomorphic to $S^{1} \times S^{1}$.

3. Lines in projective space

3.1. Lines and planes in projective space.

3.1.1. Four-dimensional cross-products. If $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{3}$ are nonzero vectors representing points

$$
a:=[\mathbf{a}], b:=[\mathbf{b}] \in \mathbb{P}^{2},
$$

then the covector $(\mathbf{a} \times \mathbf{b})^{\dagger}$ is nonzero if and only if $a \neq b$. In that case it represents the homogeneous coordinates of the line

$$
\overleftrightarrow{a b} \subset \mathbb{P}^{2}
$$

containing a and b. (Here A^{\dagger} denotes the transpose of the matrix A.)
In Problem Set 5, Exercise 4, we extended this, using the Orth trilinear form, to points in 3 -space. Namely, if $a, b, c \in \mathbb{P}^{3}$ are points
represented by nonzero vectors $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{4}$, the the homogeneous coordinates of the plane spanned by a, b, c is represented by the covector $\operatorname{Orth}(\mathbf{a}, \mathbf{b}, \mathbf{c})$. The degenerate case $\operatorname{Orth}(\mathbf{a}, \mathbf{b}, \mathbf{c})=0$ occurs if and only if a, b, c are collinear.
3.2. Rotations and the orthogonal group. The special orthogonal group, denoted SO (n) consists of all orthogonal $n \times n$ matrices of determinant 1. Equivalently, $\mathrm{SO}(n)$ consists of orientation-preserving linear isometries of \mathbb{R}^{n} (Euclidean n-space). Every element of $\mathrm{SO}(2)$ is a rotation about the origin:

$$
\exp (\theta \mathbf{J})=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Similarly, every element of $\mathrm{SO}(3)$ is rotation about a line (its axis) $A \subset \mathbb{R}^{3}$. In terms of the orthogonal direct-sum decomposition

$$
\mathbb{R}^{3}=A^{\perp} \oplus A
$$

this rotation is just the direct sum of $\exp (\theta \mathbf{J})$ on A^{\perp} (with respect to an orthonormal basis) and the identity 1 on A. However, higher dimensions are more complicated:
(8) The matrix

$$
M:=\left[\begin{array}{cccc}
4 / 5 & 3 / 5 & 0 & 0 \\
-3 / 5 & 4 / 5 & 0 & 0 \\
0 & 0 & \cos (2) & -\sin (2) \\
0 & 0 & \sin (2) & \cos (2)
\end{array}\right]
$$

is orthogonal and lies in $\mathrm{SO}(4)$
(9) M does not fix any point in \mathbb{P}^{3}. (Hint: projective fixed points correspond to eigenvectors.)
(10) Find a matrix L such that $e^{L}=M$.
(11) Find two projective lines in \mathbb{P}^{3} which are invariant under this projective transformation. Do those lines intersect?
3.3. Homogeneous Coordinates for Lines. Points in \mathbb{P}^{3} correspond to (projective equivalence classes) of nonzero vectors in \mathbb{R}^{4}. That is, the point in \mathbb{P}^{3} with homogeneous coordinates $[X: Y: Z: W]$ is the line $[\mathbf{v}]$ spanned by the nonzero vector

$$
\mathbf{v}:=\left[\begin{array}{c}
X \\
Y \\
Z \\
W
\end{array}\right] \in \mathbb{R}^{4} .
$$

Similarly, planes in \mathbb{P}^{3} correspond to (projective equivalence classes) of covectors

$$
\phi:=\left[\begin{array}{llll}
a & b & c & d
\end{array}\right] \in\left(\mathbb{R}^{4}\right)^{*},
$$

where $[\phi]=\llbracket a: b: c: d \rrbracket$ is the hyperplane defined in homogeneous coordinates by $\phi(\mathbf{v})=0$, that is,

$$
a X+b Y+c Z+d W=0
$$

That is, the point $[X: Y: Z: W]$ lies on the plane $\llbracket a: b: c: d \rrbracket$ if and only if (\star) is satisfied.

Thus points and planes in \mathbb{P}^{3} are defined in homogeneous coordinates by vectors in the vector space $\mathrm{V}:=\mathbb{R}^{4}$ and covectors in its dual vector space $\mathrm{V}^{*}=\left(\mathbb{R}^{4}\right)^{*}$. Moreover, the orthogonal complement \mathbf{v}^{\perp} of the line $\mathbb{R} \mathbf{v} \in \mathbb{R}^{4}$ is the hyperplane in \mathbb{R}^{4} defined by the covector \mathbf{v}^{\dagger}, which is the transpose of \mathbf{v}.

How can you describe lines in \mathbb{P}^{3} in a similar way by homogeneous coordinates?

Exterior Outer Products

Recall that $\mathfrak{o}(n)$ denotes the set of $n \times n$ skew-symmetric matrices, that is $X \in$ Mat $_{n}$ such that $X+X^{\dagger}=0$. The exterior outer product is the alternating bilinear map:

$$
\begin{aligned}
& \mathbb{R}^{n} \times \mathbb{R}^{n} \longrightarrow \mathfrak{o}(n) \\
& \quad(\mathbf{v}, \mathbf{w}) \longmapsto \mathbf{v} \wedge \mathbf{w}:=\mathbf{w}^{\dagger}-\mathbf{v}^{\dagger} \mathbf{w}
\end{aligned}
$$

The following facts are easy to verify:

- $(\mathbf{u} \wedge \mathbf{v}): \mathbf{w} \longmapsto(\mathbf{v} \cdot \mathbf{w}) \mathbf{u}-(\mathbf{v} \cdot \mathbf{u}) \mathbf{w}$
- If $n=3$, then $(\mathbf{u} \wedge \mathbf{v})(\mathbf{w})=(\mathbf{u} \times \mathbf{v}) \times \mathbf{w}$.
- \mathbf{w} and \mathbf{v} are linearly dependent if and only if $\mathbf{w} \wedge \mathbf{v}=0$.
- If \mathbf{w} and \mathbf{v} are linearly independent, then the projective equivalence class $[\mathbf{w} \wedge \mathbf{v}] \in \mathrm{P}(\mathfrak{o}(n))$ depends only the plane $\mathbb{R}\langle\mathbf{w}, \mathbf{v}\rangle$ spanned by \mathbf{w}, \mathbf{v}.
- The orthogonal complement of the plane $\mathbb{R}\langle\mathbf{w}, \mathbf{v}\rangle \subset \mathrm{V}$ lies in the kernel $\operatorname{Ker}(\mathbf{w} \wedge \mathbf{v})$:

$$
\mathbb{R}\langle\mathbf{w}, \mathbf{v}\rangle^{\perp} \subset \operatorname{Ker}(\mathbf{w} \wedge \mathbf{v}) .
$$

Therefore every 2-dimensional linear subspace L (plane through the origin) of \mathbb{R}^{n} determines an element of the projective space $\mathrm{P}(\mathfrak{o}(n))$. The corresponding homogeneous coordinates are the Plücker coordinates of the plane, or the corresponding projective line $\mathrm{P}(L) \subset \mathrm{P}\left(\mathbb{R}^{n}\right)$.

Plücker coordinates in \mathbb{P}^{3}

Let $V=\mathbb{R}^{4}$ and $\Lambda=\mathfrak{o}(4)$ the 6 -dimensional vector space of 4×4 skew-symmetric matrices. Then lines in $\mathbb{P}^{3}=P(V)$ correspond to 2dimensional linear subspaces of V , which in turn correspond to projective equivalence classes of certain nonzero elements $\mathbf{v} \wedge \mathbf{w} \in \Lambda$. Which elements of Λ correspond to lines in \mathbb{P}^{3} ?

Since $\operatorname{dim}(\mathrm{V})=4$, the plane $\mathbb{R}\langle\mathbf{v}, \mathbf{w}\rangle \neq \mathrm{V}$ so there exists a nonzero vector \mathbf{n} normal to this plane. By the above, \mathbf{n} lies in the kernel of the skew-symmetric matrix $\mathbf{v} \wedge \mathbf{w}$. Thus lines in \mathbb{P}^{3} determine nonzero singular matrices in Λ.

By the spectral theorem for real skew-symmetric matrices, the eigenvalues are purely imaginary and occur in complex conjugate pairs. For example, when $n=3$, every element in $\mathfrak{o}(3)$ must have a zero eigenvalue (if zero occurs with higher multiplicity the matrix itself must be zero). This implies that every element of $\mathrm{SO}(3)$ is a rotation, for example.

When $n=4$, then if 0 is not an eigenvalue, then the set of eigenvalues must be of the form

$$
\left\{r_{1} i,-r_{1} i, r_{2} i,-r_{2} i\right\},
$$

where $r_{1}, r_{2} \in \mathbb{R}$ are nonzero. In particular such a matrix has determinant $r_{1}^{2} r_{2}^{2}>0$. Since $\operatorname{Det}(\mathbf{v} \wedge \mathbf{w})=0$, but $\mathbf{v} \wedge \mathbf{w} \neq 0$, the multiplicity of 0 as an eigenvalue is exactly two, so the matrix $\mathbf{v} \wedge \mathbf{w}$ has rank 2 .

When n is even, skew-symmetric matrices in $\mathfrak{o}(n)$ have the following curious property. In general the determinant of an $n \times n$ is a degree n polynomial in its entries. When n is even, there is a degree $n / 2$ polynomial \mathcal{P} on $\mathfrak{o}(n)$ (called the Pfaffian) such that if $M \in \mathfrak{o}(n)$, then

$$
\operatorname{Det}(M)=\mathcal{P}(M)^{2}
$$

for $M \in \mathfrak{o}(n)$. That is, in even dimensions, the determinant of a skewsymmetric matrix is a perfect square. For example, when $n=2$, the general skew-symmetric matrix is

$$
M=\left[\begin{array}{cc}
0 & -y \\
y & 0
\end{array}\right]
$$

which has determinant y^{2}. Thus $\mathcal{P}(M)=y$, for example.
When $n=4$, the Pfaffian is a quadratic polynomial. The general element of $\mathfrak{o}(4)$ is:

$$
M:=\left[\begin{array}{cccc}
0 & m_{12} & m_{13} & m_{14} \\
-m_{12} & 0 & m_{23} & m_{24} \\
-m_{13} & -m_{23} & 0 & m_{34} \\
-m_{14} & -m_{24} & -m_{34} & 0 .
\end{array}\right]
$$

which has determinant

$$
\operatorname{Det}(M)=\left(m_{14} m_{23}-m_{13} m_{24}+m_{12} m_{34}\right)^{2}
$$

so the Pfaffian is (up to a choice of -1):

$$
\mathcal{P}(M)=m_{14} m_{23}-m_{13} m_{24}+m_{12} m_{34} .
$$

The vector space Λ has dimension 6 , with coordinates

$$
m_{12}, m_{13}, m_{14}, m_{23}, m_{24}, m_{34}
$$

Thus projective equivalence classes of nonzero 4×4 skew-symmetric matrices is the projective space

$$
\mathrm{P}(\Lambda) \cong \mathbb{P}^{5}
$$

with homogeneous coordinates

$$
\left[m_{12}: m_{13}: m_{14}: m_{23}: m_{24}: m_{34}\right]
$$

The nonzero singular matrices (namely, those of rank two), are those for which $\mathcal{P}(M)=0$, which is just the homogeneous quadratic polynomial condition:

$$
m_{14} m_{23}-m_{13} m_{24}+m_{12} m_{34}=0
$$

This defines a quadric hypersurface \mathcal{Q} in \mathbb{P}^{5}. Since it is defined by one equation in a 5 -dimensional space, this quadric has dimension 4.

Intuitively, we would expect that the space of lines in \mathbb{P}^{3} has dimension 4. A generic line $\ell \subset \mathbb{P}^{3}$ is not ideal and does not pass through the origin. In that case there is a point

$$
p(\ell) \in \mathbb{R}^{3} \backslash\{0\}
$$

closest to the origin $0 \in \mathbb{R}^{3}$. These points form a 3 -dimensional space $\mathbb{R}^{3} \backslash\{0\}$.

Any point $p \in \mathbb{R}^{3} \backslash\{0\}$ is the closest point $p(\ell)$ for some ℓ. Namely, look at the plane $W(p)$ containing p and normal to the vector from 0 to p. Any line ℓ on $W(p)$ passing through p satisfies $p(\ell)=p$. The set of all lines ℓ with $p(\ell)=p$ forms a \mathbb{P}^{1}, which is one-dimensional. Thus lines in \mathbb{P}^{3} are parametrized by a $4=3+1$-dimensional space.

This space is the quadric \mathcal{Q} defined above.
Just as quadric surfaces in \mathbb{P}^{3} can be parametrized as tori $S^{1} \times S^{1}$, the 4 -dimensional quadric hypersurface in \mathbb{P}^{5} can be parametrized by $S^{2} \times S^{2}$. Namely make the elementary linear substitution

$$
\begin{array}{ll}
X:=\left(m_{14}+m_{23}\right) / 2, & A:=\left(m_{14}-m_{23}\right) / 2, \\
Y:=\left(m_{13}-m_{24}\right) / 2, & B:=\left(m_{13}+m_{24}\right) / 2, \\
Z:=\left(m_{12}+m_{34}\right) / 2, & C:=\left(m_{12}-m_{34}\right) / 2
\end{array}
$$

so that

$$
\begin{aligned}
\mathcal{P}(M) & =m_{14} m_{23}-m_{13} m_{24}+m_{12} m_{34} \\
& =X^{2}-A^{2}+Y^{2}-B^{2}+Z^{2}-C^{2}
\end{aligned}
$$

Thus \mathcal{Q} is the quadric in \mathbb{P}^{5} consisting of points with homogeneous coordinates $[X: Y: Z: A: B: C]$ satisfying

$$
X^{2}+Y^{2}+Z^{2}=A^{2}+B^{2}+C^{2}
$$

Since the coordinates are real at least one is nonzero, this common sum-of-squares is positive. By rescaling we may suppose that that $X^{2}+$ $Y^{2}+Z^{2}=1$ and $A^{2}+B^{2}+C^{2}=1$. Each of these equations describes a unit sphere in a 3 -dimensional Euclidean space. Furthermore the coordinates (A, B, C) and (X, Y, Z) are independent of one another (we are looking at a direct-sum decomposition of $\mathbb{R}^{6}=\mathbb{R}^{3} \oplus \mathbb{R}^{3}$), so that the quadric \mathcal{Q} looks like $S^{2} \times S^{2}$.
3.3.1. Orthogonal Complement and Involution. Since \mathcal{P} is a homogeneous quadratic function on the vector space Λ, it arises from a symmetric bilinear form \mathcal{P} on Λ by the usual correspondences:

$$
\begin{aligned}
\mathcal{P}(X) & =\mathcal{P}(X, X) \\
\mathcal{P}(X, Y) & :=\frac{1}{2}(\mathcal{P}(X+Y)-\mathcal{P}(X)-\mathcal{P}(Y))
\end{aligned}
$$

Explicitly,
$\mathcal{P}(M, N)=\frac{1}{2}\left(m_{14} n_{23}+m_{23} n_{14}-m_{13} n_{24}-m_{24} n_{13}+m_{12} n_{34}+m_{34} n_{12}\right)$.
The usual inner product (dot product) on $\mathfrak{o}(4)$ is given by

$$
\begin{aligned}
M \cdot N & =-\frac{1}{2} \operatorname{tr}(M N) \\
& =m_{12} n_{12}+m_{13} n_{13}+m_{14} n_{14}+m_{23} n_{23}+m_{24} n_{24}+m_{34} n_{34}
\end{aligned}
$$

Since the bilinear forms \mathcal{P} and the above dot product define linear isomorphisms $\Lambda \xrightarrow{\cong} \Lambda^{*}$, they are related by a linear isomorphism $\Lambda \xrightarrow{\mathcal{I}} \Lambda$ defined by:

$$
M \longmapsto\left[\begin{array}{cccc}
0 & m_{34} & -m_{24} & m_{23} \\
-m_{34} & 0 & m_{14} & -m_{13} \\
m_{24} & -m_{14} & 0 & m_{12} \\
-m_{23} & m_{13} & -m_{12} & 0 .
\end{array}\right],
$$

that is,

$$
\begin{aligned}
& \mathcal{I}\left(m_{12}, m_{13}, m_{14}, m_{23}, m_{24}, m_{34}\right):= \\
& \quad\left(m_{34},-m_{24}, m_{23}, m_{14},-m_{13}, m_{12}\right)
\end{aligned}
$$

Clearly $\mathcal{I} \circ \mathcal{I}=I$; such a transformation is called an involution.
Geometrically, if $M \in \mathcal{Q}$ corresponds to a 2-dimensional linear subspace $L \subset \mathrm{~V}$, then $\mathcal{I}(M)$ corresponds to its orthogonal complement $L^{\perp} \subset \mathrm{V}$.

If $p \in \mathbb{P}^{3}$ is a point corresponding to a 1-dimensional linear subspace $L \subset \mathrm{~V}$, then its dual plane $p^{*} \subset \mathbb{P}^{3}$ corresponds to the orthogonal complement L^{\perp}. (The homogeneous coordinates of p^{*} form the transpose of the vector formed by the homogeneous coordinates of p.) Then \mathcal{I} maps lines through p to the lines contained in the plane p^{*}.

Here is a basic example. Take p to be the origin $(0,0,0)$ in the standard affine patch; then p^{*} is the ideal plane. The line through 0 in the direction (a, b, c) has Plücker coordinates

$$
M:=\left[\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & 0 & b \\
0 & 0 & 0 & c \\
-a & -b & -c & 0
\end{array}\right]
$$

Its dual is the ideal line, which in the ideal plane \mathbb{P}_{∞}^{2} has homogeneous coordinates $\llbracket a: b: c \rrbracket$ (that is, the line defined in homogeneous coordinates $a X+b Y+c Z=0$. In \mathbb{P}^{3} this line has Plücker coordinates:

$$
\mathcal{I}(M):=\left[\begin{array}{cccc}
0 & c & -b & 0 \\
-c & 0 & a & 0 \\
b & -a & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

3.3.2. Relation to Orth. We can relate this to the alternating trilinear function Orth (the four-dimensional cross product). It can be defined in terms of the involution \mathcal{I} and exterior outer product \wedge :

$$
\operatorname{Orth}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\mathcal{I}((\mathbf{w} \wedge \mathbf{u})(\mathbf{v}))
$$

Three points $[\mathbf{u}],[\mathbf{v}],[\mathbf{w}] \in \mathbb{P}^{3}$ (where $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathrm{V}$ are nonzero vectors are collinear if and only if $\operatorname{Orth}(\mathbf{u}, \mathbf{v}, \mathbf{w})=0$. Otherwise they span a plane in \mathbb{P}^{3} represented by $\left[\operatorname{Orth}(\mathbf{u}, \mathbf{v}, \mathbf{w})^{\dagger}\right]$.

4. Appendix: The algebra of Quaternions

4.1. Generalizing complex numbers. Let \mathbb{H} denote a four-dimensional vector space with basis denoted $\mathbf{1}, \hat{\imath}, \hat{\jmath}, \hat{k}$. Let \mathbb{H}_{0} be the 3 -dimensional
vector space based on $\hat{\imath}, \hat{\jmath}, \hat{k}$, regarded as vectors in \mathbb{R}^{3}. The bilinear map

$$
\begin{aligned}
& \mathbb{H} \times \mathbb{H} \longrightarrow \mathbb{H} \\
&\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right) \longmapsto \mathbf{q}_{1} \mathbf{q}_{2}:=-\left(\mathbf{q}_{1} \cdot \mathbf{q}_{2}\right) \mathbf{1}+\left(\mathbf{q}_{1} \times \mathbf{q}_{2}\right)
\end{aligned}
$$

is called quaternion multiplcation. Quaternion conjugation is the linear map:

$$
\begin{aligned}
& \mathbb{H} \longrightarrow \mathbb{H} \\
& \mathbf{q}:=r \mathbf{1}+\mathbf{q}_{0} \longmapsto \overline{\mathbf{q}}:=r \mathbf{1}-\mathbf{q}_{0}
\end{aligned}
$$

where $r \in \mathbb{R}$ is the real part $\operatorname{Re}(\mathbf{q})$ and $\mathbf{q}_{0} \in \mathbb{H}_{0}$ is the imaginary part $\operatorname{Im}(\mathbf{q})$. Then

$$
\mathbf{q} \overline{\mathbf{q}}=\|\mathbf{q}\|^{2}=r^{2}+\left\|\mathbf{q}_{0}\right\|^{2} \geq 0
$$

and equals zero if and only if $\mathbf{q}=0$. Thus if $\mathbf{q} \in \mathbb{H}$ is nonzero, then it is multiplicatively invertible, with its inverse defined by:

$$
\mathbf{q}^{-1}:=\|q q\|^{-2} \overline{\mathbf{q}}
$$

just like for complex numbers.
Thus \mathbb{H} is a division algebra (or noncommutative field.
The quaternions generalize complex numbers, built from the field \mathbb{R} of real numbers by adjoining one root $\hat{\imath}$ of the equation $z^{2}=1$. Note that by adjoining one $\sqrt{-1}$, there is automatically a second one, namely $-\sqrt{-1}$. This is a special case of the Fundamental Theorem of Algebra, that (counting mulitiplicities) a polynomial equation of degree n admits n complex roots.

However, there is no ordering on the field \mathbb{C} of complex numbers, that is, there is no meaningful sense of a "positive" or "negative" complex number. Thus there is no essential difference between $\hat{\imath}$ and $-\hat{\imath}$. This algebraic symmetry gives rise to the field automorphism of complex conjugation:

$$
\begin{aligned}
& \mathbb{C} \longrightarrow \mathbb{C} \\
& z \longmapsto \bar{z}
\end{aligned}
$$

The quaternions arise by adjoining three values of $\sqrt{-1}$, each in one of the coordinate directions of \mathbb{R}^{3}. Thus we obtain 6 values of $\sqrt{-1}$, but in fact there are infinitely many square-roots of -1 , one in every direction in \mathbb{R}^{3}.

However, these basic quaternion don't commute, but rather anticommute:

$$
\begin{aligned}
\hat{\imath} \hat{\jmath} & =-\hat{\jmath} \hat{\imath}=\hat{k} \\
\hat{\jmath} \hat{k} & =-\hat{k} \hat{\jmath}=\hat{\imath} \\
\hat{k} \hat{\imath} & =-\hat{\imath} \hat{k}=\hat{\jmath}
\end{aligned}
$$

Recall that (multi)linear maps of vector spaces can be uniquely determined by their values on a basis. These can be succinctly expressed in terms of tables as follows. Multiplication tables for the dot and cross products of vectors in $\mathbb{R}^{3}=\mathbb{H}_{0}$ are:

\cdot	$\hat{\imath}$	$\hat{\jmath}$	\hat{k}
$\hat{\imath}$	1	0	0
$\hat{\jmath}$	0	1	0
\hat{k}	0	0	1

\times	$\hat{\imath}$	$\hat{\jmath}$	\hat{k}
$\hat{\imath}$	0	\hat{k}	$-\hat{\jmath}$
$\hat{\jmath}$	$-\hat{k}$	0	$\hat{\imath}$
\hat{k}	$\hat{\jmath}$	$-\hat{\imath}$	0

We can describe quaternion operations by their tables as they are multilinear. For example, quaternion conjugation is described in the $\operatorname{basis}(\mathbf{1}, \hat{\imath}, \hat{\jmath}, \hat{k})$ as:

$\mathbf{1}$	$\mathbf{1}$
$\hat{\imath}$	$-\hat{\imath}$
$\hat{\jmath}$	$-\hat{\jmath}$
\hat{k}	$-\hat{k}$

Here is the multiplication table for quaternion multiplication:

	$\mathbf{1}$	$\hat{\imath}$	$\hat{\jmath}$	\hat{k}
$\mathbf{1}$	$\mathbf{1}$	$\hat{\imath}$	$\hat{\jmath}$	\hat{k}
$\hat{\imath}$	$\hat{\imath}$	$\mathbf{- 1}$	\hat{k}	$-\hat{\jmath}$
$\hat{\jmath}$	$\hat{\jmath}$	$-\hat{k}$	$\mathbf{- 1}$	$\hat{\imath}$
\hat{k}	\hat{k}	$\hat{\jmath}$	$-\hat{\imath}$	$\mathbf{- 1}$

A unit quaternion is a quaternion $\mathbf{q} \in \mathbb{H}$ such that $\|\mathbf{q}\|=1$. Unit quaternions form the unit 3 -sphere $S^{3} \subset \mathbb{R}^{4}$. The imaginary unit quaternions \mathbb{H}_{1} form a 2 -sphere

$$
S^{2} \subset \mathbb{H}_{0}=\mathbb{R}^{3} .
$$

Note that if $u \in \mathbb{H}_{1}$ is an imaginary unit quaternion then $u^{2}=-1$. This gives the infinitely many square-roots of -1 promised earlier. Furthermore, since

$$
\mathrm{u}^{n}= \begin{cases}1 & \text { if } n \equiv 0(\bmod 4) \\ \mathrm{u} & \text { if } n \equiv 1(\bmod 4) \\ -1 & \text { if } n \equiv 2(\bmod 4) \\ -\mathrm{u} & \text { if } n \equiv 3(\bmod 4)\end{cases}
$$

the usual calculation with power series implies:

$$
\begin{aligned}
\exp (\theta \mathbf{u}) & =\sum_{n=0}^{\infty} \frac{1}{n!}(\theta \mathbf{u})^{n} \\
& =\cos (\theta) \mathbf{1}+\sin (\theta) \mathbf{u}
\end{aligned}
$$

just like $e^{\hat{\imath} \theta}=\cos (\theta)+\hat{\imath} \sin \theta$ for complex numbers.
Futhermore, if $v \in \mathbb{H}_{0}$ represents a vector in \mathbb{R}^{3}, then rotation in the unit vector u by angle θ is:

$$
v \xrightarrow{\operatorname{Rot}_{u}^{\theta}} \exp (\theta / 2 \mathbf{u}) v \exp (-\theta / 2 \mathbf{u})
$$

The usual Euclidean inner product on \mathbb{R}^{4} is given in terms of quaternions $\mathbb{H} \cong \mathbb{R}^{4}$ by:

$$
v \cdot w=\operatorname{Re}(v \bar{w})
$$

again, just like the analogous formula for complex numbers.

