1. Compute \(\int_C e^x \cos zdz + ydy - e^x \sin zdz \) where \(C \) is parameterized by
\[r(t) = \cos^3 \pi t \hat{i} + \sin^3 \pi t \hat{j} + \pi t^2 \hat{k} \] for \(0 \leq t \leq 1/2 \).

2. Compute \(\int_C (y + e^x) dx + (2x^2 + \cos y) dy \) where \(C \) is the boundary of the triangle with vertices \((0, 0), (1, 1)\) and \((2, 0)\) oriented counterclockwise.

3. Use Stokes’s Theorem to compute \(\int_C \mathbf{F} \cdot d\mathbf{r} \) where
\[\mathbf{F}(x, y, z) = 2z \hat{i} + x \hat{j} + 3y \hat{k}; \]
\(C \) is the ellipse in which the plane \(z = x \) meets the cylinder \(x^2 + y^2 = 4 \), oriented counterclockwise as viewed from above.

4. Let \(D \) be the solid region containing those points whose distance from the origin is between 1 and 2. Let \(\Sigma \) be the boundary surface of \(D \) with outward normal \(\mathbf{n} \). Let
\[\mathbf{F}(x, y, z) = (x^3 + 3xy^2) \hat{i} + (e^{xz} - x^2) \hat{j} + (z^3 + z^2) \hat{k} \]
Evaluate
\[\int \int_{\Sigma} \mathbf{F} \cdot \mathbf{n} dS. \]