1. Consider the integral
\[I = \int_0^4 \int_{\sqrt{x}}^2 \sqrt{1 + y^3} \, dy \, dx. \]
(a) Sketch the region \(R \) over which the integration takes place.
(b) Evaluate \(I \) by reversing the order of integration.

2. Set up a triple integral for finding the volume \(V \) of the solid bounded on the top by the plane \(z = y \), on the bottom by the \(xy \) plane and on the sides by the plane \(y = 3x - 2 \) and the parabolic sheet \(y = x^2 \). Do not evaluate the integral.

3. An object occupies the region bounded above by the sphere \(x^2 + y^2 + z^2 = 1 \) and below by the cone \(z = \sqrt{x^2 + y^2} \) and has mass density
\[\delta(x, y, z) = z \sqrt{x^2 + y^2 + z^2}. \]
(a) Find the mass of the object.
(b) Find the center of gravity of the object.

4. Find the surface area \(S \) of the portion of the surface \(z = xy \) that is inside the cylinder \(x^2 + y^2 = 1 \).

5. Compute \(\int \int_R y \, dA \) where \(R \) is the region bounded by \(y = 3x \), \(x = 3y \) and \(x + y = 4 \) by making the change of variables \(x = 3u + v \), \(y = u + 3v \).