1. Let

\[A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 3 & 2 & 1 \end{pmatrix} \]

(a) Find a permutation matrix \(P \), a lower triangular matrix \(L \) and an upper triangular matrix \(U \) such that

\[PA = LU. \]

(b) Show how the factorization (1) is used to solve \(Ax = b \).

2. Let \(u = (1, 1, 1)^T \), \(v = (1, 7, 1, 7)^T \), \(W = \text{Span}\{u, v\} \).

 (a) Calculate \(\|v\| \), the projection of \(v \) onto \(u \) and the unit vector in the direction of \(u \).

 (b) Apply the Gram-Schmidt process to \(\{u, v\} \) to obtain an orthonormal basis for \(W \).

 (c) Let \(y = (3, 2, -1, 2)^T \). Find \(z \), the vector in \(W \) which is closest to \(y \).

3. Let \(u_1 = (1, 2, 3)^T \), \(u_2 = (1, 1, -1)^T \), \(W = \text{span}\{u_1, u_2\} \). Find a basis for \(W^\perp \).

4. Let \(u \) be a unit vector in \(\mathbb{R}^n \) and let \(P = I - 2uu^T \). (\(P \) is an \(n \times n \) matrix.) Show

 (a) \(P \) is symmetric.

 (b) \(P \) is orthogonal.

 (c) \(P^2 = I \).

 If \(u = \left(\frac{3}{5}, \frac{4}{5}\right)^T \), what is \(P \) ?

5. We wish to fit the data (0,1), (1,3), (2,7), (3,10), (4,20) to a function of the form

\[f(x) = a + bx + cx \]

in the sense of least squares. Find an equation for the coefficients \(a \), \(b \) and \(c \). Do not do any computations.

6. In \(C[0,1] \) with the inner product defined by

\[f \cdot g = \int_0^1 f(x)g(x) \, dx \]

consider the vectors 1 and \(x \).

 (a) Determine the projection \(p \) of 1 onto \(x \) and verify that \(1 - p \) is orthogonal to \(p \).

 (b) Compute \(\|1-p\|, \|p\|, \|1\| \) and verify that the Pythagorean theorem holds.