1. (a) Give an example of an infinite collection of open sets \(U_k, k \in \mathbb{N} \) in \(\mathbb{R} \) such that \(\bigcap_k U_k \) is not open.
(b) Give an example of an infinite collection of closed sets \(F_k, k \in \mathbb{N} \) in \(\mathbb{R} \) such that \(\bigcup_k F_k \) is not closed.

2. Let \(A \) be a subset of \(\mathbb{R}^n \). The *characteristic function* of the set \(A \) is the function \(f : \mathbb{R}^n \to \mathbb{R} \) defined by

\[
f(u) = \begin{cases}
1 & u \in A \\
0 & u \notin A
\end{cases}
\]

Prove that this characteristic function is continuous at each interior point of \(A \) and at each exterior point of \(A \) but fails to be continuous at each boundary point of \(A \).

3. Let \(f(x, y) = |x^2y + x^3y^3|^{1/4} \).
(a) Prove that \(f \) is continuous at \((0,0) \).
(b) Compute the partial derivatives of \(f \) at \((0,0) \).
(c) Show directly from the definition that \(f \) is not differentiable at \((0,0) \).

4. Let

\[f(x, y) = \frac{1}{x} + \frac{1}{y} + xy. \]

(a) Show that \((1,1) \) is a critical point of \(f \), i.e. the derivative vector of \(f \) vanishes there.
(b) Decide whether \((1,1) \) is a local maximizer, a local minimizer or a saddle point for \(f \).