1. Consider $f : \mathbb{R}^n \to \mathbb{R}$ such that $f(p_1 + p_2) = f(p_1)f(p_2)$ for all $p_1, p_2 \in \mathbb{R}^n$.
 (a) Show that either $f(0) = 0$ or $f(0) = 1$.
 (b) Give a (non-constant) example of such an f with $f(0) = 1$ when $n = 1$.
 (c) Assume $f(0) = 1$. Show that f is continuous on \mathbb{R}^n if and only if f is continuous at 0.

2. Consider $f(x, y) = |x - y|$. Determine all directions p for which $\frac{\partial f}{\partial p}(1, 1)$ exists.

3. Consider f defined by

 $f(x_1, \ldots, x_n) = \begin{cases}
 x_1x_2\cdots x_n/(x_1^2 + x_2^2 + \cdots + x_n^2), & (x_1, \ldots, x_n) \neq (0, \ldots, 0) \\
 0, & (x_1, \ldots, x_n) = (0, \ldots, 0)
 \end{cases}$

Determine all values of n for which f is differentiable at the origin.

4. (Rolle’s Theorem) Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is a differentiable function such that $f(p) = 0$ if $\|p\| = 1$. Show that there is a q with $\|q\| < 1$ such that $Df(q) = 0$. (For $n = 1$, this is Rolle’s theorem. Examine the proof in this case.)

5. Ex.15, p.379, Fitzpatrick.

8. Ex.11, p.393, Fitzpatrick.