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Abstract. We use Goncharov’s coproduct of multiple polylogarithms to define a Lie coalgebra
over an arbitrary field. It is generated by symbols subject to inductively defined relations, which
we think of as functional relations for multiple polylogarithms. In particular, we have inversion
relations and shuffle relations. We relate our definition to Goncharov’s Bloch groups, and to
the concrete model for L(F )≤4 by Goncharov and Rudenko.

1. Introduction

1.1. The motivic Lie coalgebra. For a field F , one expects the existence of a graded Lie coal-
gebra L(F ) such that the weight n part of its Chevalley-Eilenberg complex ∧∗(L(F )) computes
the motivic cohomology groups H i

M(F,Z(n)) (see e.g. [Gon94]). The existence of this so-called
motivic Lie coalgebra is known for number fields [Gon05]. It is desirable to have a concrete
description. Goncharov [Gon94] conjectures that ∧∗(L(F ))n is rationally quasi-isomorphic to
the Bloch complex Γ(F, n) defined in [Gon95]. This complex has the form

(1) Bn(F )
δ // · · · δ // Bn−k(F )⊗ ∧k(F ∗) δ // · · · δ // B2(F )⊗ ∧n−2(F ∗) δ // ∧n(F ∗),

with each group Bk(F ) being generated by symbols {x}k with x ∈ F ∪ {∞} subject to relations
that may be thought of as polylogarithm relations. The rightmost δ takes {x}2⊗a to x∧(1−x)∧a,
and the others take {x}k ⊗ a to {x}k−1 ⊗ x ∧ a. Goncharov conjectures that L(F )n = Bn(F )
for n ≤ 3, but for n = 4, L(F )4 is larger. An explicit model for ∧∗(L(F ))n≤4 is given in
Goncharov-Rudenko [GR18] (see Section 6 for a brief summary).

1.2. Multiple polylogarithms and Goncharov’s coproduct. The classical polylogarithms
Lin(x) have multivariable generalizations Lin1,...,nd(x1, . . . , xd) called multiple polylogarithms.
Their properties are extensively studied by Goncharov [Gon01, Gon05]. He shows that one may

view Lin1,...,nd(x1, . . . , xd) and log(x) as elements LiCn1,...,nd
(x1, . . . , xd) and logC (x) of a certain

Hopf algebra (the Hopf algebra of framed rational Hodge structures [Gon05, appendix]). In fact,
they generate a Hopf subalgebra of this Hopf algebra, and Goncharov gives an explicit formula
for the coproduct. It is best described using the generating series

(2)

LiC (x1, . . . , xd|t1, . . . , td) =
∑
ni≥1

LiCn1,...,nd
(x1, . . . , xd)t

n1−1
1 · · · tnd−1d ,

xt =
∑
n≥0

1

n!
logC (x)ntn.

The coproduct of a generating series is defined termwise (fixing the ti).
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Theorem 1.1 ([Gon05, Prop. 6.1]). The coproduct ∆ of LiC (x1, . . . , xd|t1, . . . , td) is given by

(3)

∑
LiC (xi1→i2 , . . . , xik→ik+1

|tj1 , . . . tjk)
⊗

k∏
α=0

(−1)jα−iαx
tjα
iα→iα+1

(
LiC (x−1jα−1, x

−1
jα−2, . . . , x

−1
iα
|tjα − tjα−1, . . . , tjα − tiα)

· LiC (xjα+1, xjα+2, . . . , xiα+1−1|tjα+1 − tjα , . . . tiα+1−1 − tjα)
)

The sum is over all k = 0, . . . , d, and all sequences {iα}k+1
α=0 and {jα}kα=0 with

(4) iα ≤ jα < iα+1, j0 = i0 = 0, ik+1 = d+ 1,

and by definition we have xi→j =
∏j−1
r=i xr(note that this convension differs from Goncharov’s,

but works better in this paper) and LiC (∅|∅) = 1.

Example 1.2. When d = 2, the {iα} and {jα} satisfying (4) are:

(5) (
i0
0,

j0
0 |
i1
1,

j1
1 |
i2
2,

j2
2 |
i3
3), (

i0
0,

j0
0 |
i1
1,

j1
1 |
i2
3), (

i0
0,

j0
0 |
i1
1,

j1
2 |
i2
3), (

i0
0,

j0
0 |
i1
2,

j1
2 |
i2
3), (

i0
0,

j0
0 |
i1
3),

and it follows that
(6)

∆ LiC (x1, x2|t1, t2) = LiC (x1, x2|t1, t2)⊗ xt11 x
t2
2 + LiC (x1x2|t1)⊗ (x1x2)

t1 LiC (x2|t2 − t1)

−LiC (x1x2|t2)⊗ (x1x2)
t2 LiC (x−11 |t2 − t1) + LiC (x2|t2)⊗ LiC (x1|t1)xt22 + 1⊗ LiC (x1, x2|t1, t2).

One can then compute ∆ LiCn1,n2
(x1, x2) as the coefficient of tn1−1

1 tn2−1
2 of the right-hand side

of (6).

Given a graded Hopf algebra H, we have a Lie coalgebra L = H>0

H>0H>0
with cobracket induced

by the coproduct. We are thus interested in the quotient by products. The following elementary
corollary of Theorem 1.1 is our main motivation.

Corollary 1.3. Modulo products and constants, ∆ LiC (x1, . . . , xd|t1, . . . , td) can be written as

(7)

LiC (x1,...,d|t1,...,d)⊗
d∑
p=1

tp logC (xp)+

d∑
p=2

LiC (xp,...,d|tp,...,d)⊗ LiC (x1,...,p−1|t1,...,p−1)+∑
1≤p<q≤d

LiC (x1,...,p→q,...,d|t1,...,p,q+1,...,d)⊗ LiC (xp+1,...,q|tp+1,...,q − tp)+∑
1≤p<q≤d

(−1)q−p LiC (x1,...,p→q,...,d|t1,...,p−1,q,...,d)⊗ LiC (x−1q−1, x
−1
q−2, . . . , x

−1
p |tq − tq−1,...,p)

Where x1,...,p→q,...,d is shorthand for (x1, . . . , xp−1,
∏q
r=p xr, xq+1, . . . , xd) and dots indicate that

indices increase (or decrease) by 1. We stress that the product is from p to q, not to q − 1.
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Proof. One easily checks that the only sequences {iα} and {jα} for which the corresponding
term in (3) does not involve products are

(8)

(
i0
0,

j0
0 |
i1
1,

j1
1 |
i2
2,

j2
2 | · · · |

id
d,

jd
d |,

id+1

d+ 1)

(
i0
0,

j0
0 |i1p,

j1
p |

i2
p+ 1,

j2
p+ 1| · · · |

ik
d,

jk
d |,

ik+1

d+ 1)

(
i0
0,

j0
0 |
i1
1,

j1
1 | · · · |

ip
p,

jp
p |

ip+1

q + 1,
jp+1

q + 1| · · · |
ik
d,

jk
d |,

ik+1

d+ 1)

(
i0
0,

j0
0 |
i1
1,

j1
1 | · · · |

ip
p,

jp
q |

ip+1

q + 1,
jp+1

q + 1| · · · |
ik
d,

jk
d |,

ik+1

d+ 1),

and that the corresponding terms are exactly those given in (7). �

1.3. Real single valued polylogarithms. One has single valued variants Ln(x) of the classical
polylogarithms (see e.g. [DB12, Zag91])

(9) Ln(z) =
Re if n is odd
Im if n is even

(
n−1∑
r=0

2rBr
r!

Lin−r(z)(log |z|)r
)
.

The following result justifies thinking about the relations in Bn(F ) as polylogarithm relations:

Theorem 1.4 ([Zag91, Prop. 3]). For any element α =
∑
nifi(t) ∈ Bn(C(t)) with δ(α) = 0 in

Bn−1(C(t))⊗ C(t)∗ we have

(10)
∑

niLn(fi(t)) = constant.

There are also single valued analogues Ln1,...,nd of the multiple polylogarithms Lin1,...,nd . There
is no closed formula, but they can be computed from a variation matrix [Zha02]. We shall here
only need that Ln1,...,nd is defined on

(11) Sd(C) =
{

(x1, . . . , xd) ∈ (C∗)d
∣∣ j∏
r=i

xr 6= 1 for all i ≤ j ∈ {1, . . . , d}
}

and that

(12) lim
xi→0

Ln1,...,nd(x1, . . . , xd) = 0 for all i.

The functions Ln(x) also satisfy that limx→∞ Ln(x) = 0 for n > 1, but in higher depth the limit
as xi tends to ∞ is no longer 0.

1.4. Structure of the paper. In Section 2 we define a purely symbolic coalgebra Lsymb(F )

with no relations. We have Lsymb
1 (F ) = F ∗, and Lsymb

>1 is generated by symbols [x1, . . . , xd]n1,...,nd
with (x1, . . . , xd) ∈ Sd(F ), where d and n1, . . . , nd are positive integers. Thinking of a symbol
as a polylogarithm we define the cobracket as in Corollary 1.3 and show directly that δ2 = 0.
In Section 3 we inductively define a group of relations Rn(F ) and define

(13) Ln(F ) = Lsymb
n (F )/Rn(F ).

The definition mimics Goncharov’s definition of relations in Bn(F ), and the proof that the
cobracket takes relations to 0 in ∧2(L(F )) follows Goncharov as well. Section 3.1 gives some
basic examples of relations, and Section 3.2 discusses the problem of defining symbols when
(x1, . . . , xd) /∈ Sd(F ). For example, [1, 1]1,1 is not well defined. In Section 3.3 we speculate
that L(F ) is the motivic Lie coalgebra L(F ) and conjecture a generalization of Theorem 1.4,
which justifies thinking of Rn(F ) as polylogarithm relations. Section 4 discusses the inversion
relations, which are inspired by Goncharov’s inversion relations for multiple polylogarithms. In
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particular, we show that in L(F ) one can express each symbol [x−1d , . . . , x−11 ]nd,...,n1 in terms
of symbols involving only non-inverted xi. Section 4.1 shows that one can use this to define
an alternative cobracket on Lsymb(F ) without inverted xi. The relations are the same. The
alternative one may in fact be more natural (see e.g. Remark 5.3). Section 5 briefly discusses
the shuffle product relations showing that at least in low depth a shuffle product is 0 in L(F ).
Finally, Section 6 relates our work to that of Goncharov and Rudenko, who gave a concrete
model for Ln≤4(F ).

Remark 1.5. Although our work is heavily inspired by the work of Goncharov, it does not
require any of Goncharov’s results, except for motivation.

Acknowledgment. We thank Lars Hesselholt for helpful comments. C. Z. was funded in part
by NSF grant DMS-1711405.

2. A purely symbolic Lie coalgebra

For a field F , and a positive integer d, let

(14) Sd(F ) =
{

(x1, . . . , xd) ∈ (F ∗)d
∣∣ j∏
r=i

xr 6= 1 for all i ≤ j ∈ {1, . . . , d}
}
.

We wish to define a graded Lie coalgebra

(15) Lsymb(F ) =
∞⊕
n=1

Lsymb
n (F ).

We first define Lsymb
1 (F ) = F ∗, which we shall identify with the abelian group generated by

symbols [x]1 with x ∈ F \ {0, 1} and [x]0 for x ∈ F \ {0, 1} subject to the relations

(16) [x]1 = −[1− x]0, [xy]0 = [x]0 + [y]0.

For n > 1, define Lsymb
n (F ) to be generated by symbols [x1, . . . , xd]n1,...,nd with

(17) (x1, . . . , xd) ∈ Sd(F ), d, n1, . . . , nd ∈ Z+, n1 + · · ·+ nd = n.

We refer to n1 + · · ·+ nd as the weight and d as the depth of a symbol, but stress that [x]0 is in
weight 1, not 0. We think of [x1, . . . , xd]n1,...,nd as representing Lin1,...,nd(x1, . . . , xd) and [x]0 as
representing log(x).

2.1. The cobracket on Lsymb(F ). As in (2) we define

(18) [x1, . . . , xd|t1, . . . , td] =
∑
ni≥1

[x1, . . . , xd]n1,...,ndt
n1−1
1 · · · tnd−1d ,
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and define δ : Lsymb(F ) → ∧2(Lsymb(F )) to be zero in weight 1, and otherwise given by (7). It
is convenient to write δ = δ1 + δ2 + δ3 + δ4, where for X = [x1,...,d|t1,...,d]

(19)

δ1(X) = X ∧

 d∑
p=1

tp[xp]0


δ2(X) =

d∑
p=2

[xp,...,d|tp,...,d] ∧ [x1,...,p−1|t1,...,p−1]

δ3(X) =
∑

1≤p<q≤d
[x1,...,p→q,...,d|t1,...,p,q+1,...,d] ∧ [xp+1,...,q|tp+1,...,q − tp]

δ4(X) =
∑

1≤p<q≤d
(−1)q−p[x1,...,p→q,...,d|t1,...,p−1,q,...,d] ∧ [x−1q−1, . . . , x

−1
p |tq − tq−1,...,p].

Example 2.1. In depth 1, we have δ[x|t] = [x|t] ∧ t[x]0, from which it follows that δ[x]n =
[x]n−1 ∧ [x]0 for n > 1. Note the case δ[x]2 = [x]1 ∧ [x]0 = x∧ (1−x) ∈ ∧2(F ∗). We thus recover
the boundary map in the Bloch complex.

Example 2.2. In depth 2, δ[x1, x2|t1, t2] equals (compare with (6))

(20)
δ[x1, x2|t1, t2] = [x1, x2|t1, t2] ∧ (t1[x1]0 + t2[x2]0) + [x2|t2] ∧ [x1|t1]+

[x1x2|t1] ∧ [x2|t2 − t1]− [x1x2|t2] ∧ [x−11 |t2 − t1].
In particular, δ[x1, x2]r,s is given by

(21)

[x1, x2]r−1,s ∧ [x1]0 + [x1, x2]r,s−1 ∧ [x2]0 + [x2]s ∧ [x1]r

+
r∑
i=1

(−1)r−i
(
r + s− 1− i

s− 1

)
[x1x2]i ∧ [x2]r+s−i

+
s∑
i=1

(−1)r
(
r + s− 1− i

r − 1

)
[x1x2]i ∧ [x−11 ]r+s−i.

In the case where r or s is 1, the symbols [x1, x2]0,s and [x1, x2]r,0 are interpreted as 0.

Remark 2.3. In our definition of ∧2(Lsymb(F )), x ∧ x is identically 0, not 2-torsion.

Theorem 2.4. The cobracket above makes Lsymb(F ) into a Lie coalgebra.

Proof. We must show that δ2 = 0. To do this, it is enough to show that

(22)
δ21 = 0, δ22 = 0, δ1δi + δiδ1 = 0,

δ23 + δ2δ3 + δ3δ2 = 0, δ2δ4 + δ4δ2 + δ24 + δ3δ4 + δ4δ3 = 0.

The proof that δ21 = 0 is elementary. The remaining equalities are all straightforward, so for
brevity, we prove only that δ22 = 0, and that δ1δ4 + δ4δ1 = 0. Firstly, δ22([x1,...,d|t1,...,d]) is given
by

(23)

∑
2≤p≤d

δ2[xp,...,d|tp,...,d] ∧ [x1,...,p−1|t1,...,p−1]−
∑

2≤p≤d
[xp,...,d|tp,...,d] ∧ δ2[x1,...,p−1|t1,...,p−1]

=
∑

2≤p≤d

∑
p+1≤r≤d

[xr,...,d|tr,...,d] ∧ [xp,...,r−1|tp,...,r−1] ∧ [x1,...,p−1|t1,...,p−1]

−
∑

2≤p≤d

∑
2≤r≤p−1

[xp,...,d|tp,...,d] ∧ [xr,...,p−1|tr,...,p−1] ∧ [x1,...,r−1|t1,...,r−1] = 0.



6 ZACHARY GREENBERG, DANI KAUFMAN, HAORAN LI, AND CHRISTIAN K. ZICKERT

Similarly, δ1δ4([x1,...,d|t1,...,d]) equals

(24)

∑
1≤p<q≤d

(−1)q−pδ1[x1,...,p→q,...,d|t1,...,p−1,q,...,d] ∧ [x−1q−1, . . . , x
−1
p |tq − tq−1,...,p]

− (−1)q−p[x1,...,p→q,...,d|t1,...,p−1,q,...,d] ∧ δ1[x−1q−1, . . . , x
−1
p |tq − tq−1,...,p],

which equals
(25)

=
∑

1≤p<q≤d
(−1)q−p[x1,...,p→q,...,d|t1,...,p−1,q,...,d]∧ ∑

1≤r≤p−1
tr[xr]0 + tq[xp · · ·xq]0 +

∑
q+1≤r≤d

tr[xr]0

 ∧ [x−1q−1, . . . , x
−1
p |tq − tq−1,...,p]

− (−1)q−p[x1,...,p→q,...,d|t1,...,p−1,q,...,d] ∧ [x−1q−1, . . . , x
−1
p |tq − tq−1,...,p] ∧

 ∑
p≤r≤q−1

(tq − tr)[x−1r ]0


= −

∑
1≤p<q≤d

(−1)q−p[x1,...,p→q,...,d|t1,...,p−1,q,...,d] ∧ [x−1q−1, . . . , x
−1
p |tq − tq−1,...,p] ∧

 ∑
1≤r≤d

tr[xr]0

 .

Finally,

(26) δ4δ1([x1,...,d|t1,...,d]) = δ4[x1,...,d|t1,...,d] ∧

 d∑
p=1

tp[xp]0

 =

=
∑

1≤p<q≤d
(−1)q−p[x1,...,p→q,...d|t1,...,p−1,q,...d] ∧ [x−1q−1, . . . , x

−1
p |tq − tq−1,...,p] ∧

 d∑
p=1

tp[xp]0

 ,

and it follows that δ1δ4 + δ4δ1 = 0. �

Remark 2.5. Theorem 2.4 also holds without requiring that the tuples are in Sd(F ) (same
proof). The problem with arbitrary tuples arises when defining the relations; see Section 3.2.

2.2. Terms involving zero or infinity. We shall also define elements [x1, . . . , xd]n1,...,nd when

some of the xi are 0 or ∞, but we still require that all consecutive products
∏j
r=i xr are well

defined and not 1 (∞xi = ∞ 6= 1; 0∞ is undefined). When some xi are 0, [x1, . . . , xd]n1,...,nd
is defined to be zero (this is motivated by (12)). When some xi are ∞ the definition is more
subtle and we refer to Section 4. All we need for now is that [∞]n = 0 for n > 1 (and undefined
for n=1).

3. The relations

We now define groups Rn(F ) of relations in Lsymb
n (F ). We can then define

(27) Ln(F ) = Lsymb
n (F )/Rn(F ).

The definition is inductive starting with the definition of R1(F ) to be the trivial group, so that
L1(F ) = F ∗. Suppose n > 1 and that Lk(K) has been defined for all fields K and all k < n.
Then

(28) ∧2 (L(K))n =
⊕
k+l=n

Lk(K) ∧ Ll(K)
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is also well defined for all K. Let

(29) An(K) = Ker
(
δ : Lsymb

n (K)→ ∧2(L(K))n

)
Mimicking Goncharov’s definition of relations in the Bloch complexes [Gon95, p. 221] we wish

to define Rn(F ) ⊂ Lsymb
n (F ) to be generated by elements α(p)− α(q), where p and q are points

on a connected (geometrically irreducible) smooth curve X over F with function field F (X) and
α is an element in An(F (X)). The only problem with this is our requirement that all tuples be
well defined (allowing for 0 and ∞; see Section 2.2).

Each element α ∈ Lsymb(F (X)) is a linear combination of terms [f1, . . . , fd]n1,...,nd , which we
refer to as terms of α.

Definition 3.1. We say that α ∈ Lsymb(F (X)) is well defined at x ∈ X if all products
∏j
r=i fr(x)

are defined and distinct from 1, for each term [f1, . . . , fd]n1,...,nd of α.

By induction, we see that if α ∈ An(F (X)), we can rearrange the terms δ(α) as a linear
combination of terms (β(q)−β(q′))⊗ y, where Y is a smooth connected curve over F (X), q and

q′ are points in Y , β ∈ Ak(F (X)(Y )) and y ∈ Lsymb
n−k (F (X)).

Definition 3.2. All α ∈ A2 are proper. For n > 2, α ∈ An(F (X)) is proper if whenever α is
well defined at x ∈ X, there is an arrangement of δ(α) as above with β(q), β(q′), and y all well
defined at x (no cancelation of undefined terms) with β proper.

Definition 3.3. The group Rn(F ) is generated by elements of the form α(p) − α(q), where
α ∈ An(F (X)) is proper and well defined at p, q ∈ X.

We now prove that L(F ) is also a Lie coalgebra. To do this we must prove that the cobracket
respects the relations. The proof is similar to [Gon95, Lemma 1.16].

Theorem 3.4. The map δ : Lsymb
n (F )→ ∧2(L(F ))n takes Rn(F ) to 0.

Proof. It is enough to show that for any proper α ∈ An(F (X)), the element δ(α(p)) is zero
in ∧2(L(F ))n for all p ∈ X where α(p) is defined. Fix such X, α, and p and write δ(α) in
∧2(Lsymb(F (X))) as a linear combination of terms (β(q) − β(q′)) ∧ y as above. It follows that
δ(α(p)) is a linear combination of elements of the form (β(q)(p)−β(q′)(p))⊗y(p), and the result

follows by showing that β(q)(p)−β(q′)(p) is in Rk(F ). Let βp be the element in Lsymb
k (F (Y (p)))

obtained from β by restriction to the fiber Y (p) over p. Since β is in Ak(F (X)(Y ))), an induction
argument shows that βp is in Ak(F (Y (p)) and is proper. Note that q and q′ can be regarded as
maps X → Y , so restriction to p ∈ X determines points qp and q′p in Y (p). We then have

(30) β(q)(p)− β(q′)(p) = βp(qp)− βp(qp) ∈ Rk(F ).

This concludes the proof. �

3.1. Basic examples of relations. In the following examples we repeatedly use the fact that
for α ∈ Lsymb(F (x)), δ(α) = 0 ∈ ∧2(L(F (x))) implies that α(x) is constant in L(F ).

Example 3.5. Let αn = 2([x]n+(−1)n[x−1]n) ∈ Lsymb
n (F ). By induction, αn ∈ An(F (x)) when

n ≥ 2, so αn(x) is constant in Ln(F ). Hence, αn(x) = αn(0) = 2[0]n + 2(−1)n[∞]n = 0. Note,
however, that α1(x) = −2[x]0.

Example 3.6. One easily shows that α = [x, y]1,1+[x]2−[x(1−y)1−xy ]2 is in A2(F (x, y)). Considering

the specialization at (x, y) = (0, y) it follows that [x, y]1,1+[x]2−[x(1−y)1−xy ]2 = 0 ∈ L2(F ) whenever

all terms are defined. This means that every element in L2(F ) can be expressed using only terms
in depth 1.
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Example 3.7 (Five term relation). Similarly, we obtain that

(31) [x]2 + [y]2 − [xy]2 − [
y(1− x)

1− xy
]2 − [

x(1− y)

1− xy
]2 = 0 ∈ L2(F ).

Proposition 3.8. Modulo 2-torsion every element in L3(F ) can be written in terms of depth 1
symbols.

Proof. A simple computation shows that the elements

(32) [x, y]2,1 + [x]3 + [
1− y

1− xy
]3 + [xy]3 + [− xy

1− xy
]3 − [1 − y]3 − [

x(1− y)

1− xy
]3

and

(33) [x, y, z]1,1,1 − [− y

1− y
]3 + [

1− x
1− xyz

]3 − [xy]3 + [
xy(1− z)
1− xyz

]3

− [1− x]3 + [−y(1− x)

1− y
]3 + [−y(1− z)

1− y
]3 − [− y(1− x)(1− z)

(1− xyz)(1− y)
]3

have vanishing cobracket modulo 2-torsion. Specializing at (0, y) and (x, 0, z), respectively,
proves the result for [x, y]2,1 and [x, y, z]1,1,1. Finally, [x, y]1,2+[y, x]2,1+[xy]3 also has vanishing
cobracket, concluding the proof. �

Remark 3.9. With more work one can show that (up to torsion) every element in L4(F ) can
be expressed in terms of terms of the form [x]4 and [x, y]3,1. For example, one has

(34) [x, y]2,2 = [y]4 + [xy]4 + [y, x]3,1 + [xy, x−1]3,1 − [x, y]3,1.

Similar equations for [x, y, z]2,1,1, [x, y, z]1,2,1, [x, y, z]1,1,2, and [x, y, z, w]1,1,1,1 are more compli-
cated, and we omit them.

3.2. The issue of arbitrary symbols. The following argument shows that not all symbols
can be meaningfully defined. By Example 3.6 we should have for any a

(35) [x,
x− a
x− ax

]1,1 + [x]2 − [a]2 = 0.

Setting x = 1, we would thus get that [1, 1]1,1 + [1]2 = [a]2 for any a, which would imply that
L2(F ) = 0.

Remark 3.10. We believe that the reason for this is that L1,1(x, y) does not have a limit as x
and y tend to 1. One has similar issues with symbols such as [x1, 0,∞]1,1,1.

Remark 3.11. One can give meaning to some additional symbols, but these should always be
expressible in terms of symbols in Sd(F ). For example, one may define [x, x−1]1,1 = −[x]2. We
shall not pursue this here.

3.3. Conjectures and speculation. Conjecture 3.12 below is a natural generalization of The-
orem 1.4. Consider the map

(36) r : Lsymb(C)→ R, [x1, . . . , xd]n1,...,nd → Ln1,...,nd(x1, . . . , xd), [x]0 7→ log(|x|).

Conjecture 3.12. If α ∈ L(C(t)) is such that δ(α) = 0, then r(α(t)) = 0 is constant in t.

Remark 3.13. We have verified Conjecture 3.12 numerically for many examples in weight 4
and lower.
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We also speculate more boldly that L(F ) is rationally isomorphic to the motivic Lie coalgebra,
so that the weight n part of the complex

(37) L(F )
δ // ∧2(L(F ))

δ∧id− id∧δ// ∧3(L(F )) // . . .

should compute motivic cohomology, rationally. For a finite field Fq with q elements the only
motivic cohomology groups are

(38) H1
M(Fq,Z(n)) = K2n−1(Fq) = Z

/
(qn − 1)Z.

Assuming that R2(Fq) is generated by five term relations and that R3(Fq) is generated by the
31 term relations in [Zic19], one can compute H1(

∧∗(L(Fq))n) for n = 2 and 3. When q > 3,
experimental evidence suggests that integrally, one has

(39) |H1(
∧∗ (L(Fq)

)
n
)| =2,3

|H1
M(Fq,Z(n))|
|F ∗q |

where =2,3 means equality up to small powers of 2 and 3. The equality appears to hold on the
nose when n = 2.

4. Inversion relations

In the following we ignore 2-torsion. It is well known (see e.g. [Lew91]) that the classical
polylogarithms satisfy the inversion relation

(40) Lin(x) + (−1)n Lin(x−1) = −(2πi)n

n!
Bn

(
log x

2πi

)
,

where Bn(x) =
∑n

k=0

(
n
k

)
Bn−kx

k are the Bernoulli polynomials. Thinking of a symbol [x]n as

Lin(x) modulo products and powers of πi, we would thus expect [x]n + (−1)n[x−1]n to be zero
in Ln(F ). This was proved in Example 3.5.

Goncharov [Gon01, Sec. 2.6] extended the classical inversion formula to multiple polyloga-
rithms. For example, one has

(41)

Lin1,n2(x1, x2) + (−1)n1+n2 Lin2,n1(x−12 , x−11 ) + (−1)n1 Lin1(x−11 ) Lin2(x2)

+
∑

p+q=n1

(2πi)p

p!
(−1)q

(
q + n2 − 1

n2 − 1

)
Bp

(
log(x1x2)

2πi

)
Liq+n2(x2)

+
∑

p+q=n2

(2πi)p

p!
(−1)n1

(
n1 + q − 1

n1 − 1

)
Bp

(
log(x1x2)

2πi

)
Lin1+q(x

−1
1 ) = 0,

which suggests that we should have

(42) [x1, x2]n1,n2 + (−1)n1+n2 [x−12 , x−11 ]n2,n1

+ (−1)n1

(
n1 + n2 − 1

n2 − 1

)
[x2]n1+n2 + (−1)n1

(
n1 + n2 − 1

n1 − 1

)
[x−11 ]n1+n2 = 0 ∈ Ln1+n2(F ).

More generally, Goncharov’s work suggests that [x−1d , . . . , x−11 ]nd,...,n1 should be expressible using
terms where no xi is inverted. Inspired by Goncharov’s work we make the following definition.
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Definition 4.1. The inversion map is defined inductively on power series by the formula

(43) inv([x1,...,d|t1,...,d]) = −(−1)d[x1,...,d|t1,...,d] +
(−1)d

t1
[x2,...,d|t2,...,d]

− (−1)d

t1
[x2,...,d|t2,...,d − t1]−

1

td
inv([x1,...,d−1|t1,...,d−1]) +

1

td
inv([x1,...,d−1|t1,...,d−1 − td]).

The induction starts with the formula inv[x|t] = [x|t] + [x]0.

We wish to prove the following:

Theorem 4.2. We have [x−1d,...,1| − td,...,1 ] = inv[x1,...,d|t1,...,d] ∈ L(F ). In particular,

(44) (−1)d(−1)n1+···+nd [x−1d , . . . , x−11 ]nd,...,n1 = inv[x1, . . . , xd]n1,...,nd .

Example 4.3. For d = 1, we have (−1)n+1[x−1]n = [x]n for n > 1 and [x−1]1 = [x]1 + [x]0.
These hold by Example 3.5.

Example 4.4. For d = 2, inv[x1, x2|t1, t2] equals

(45) − [x1, x2|t1, t2] +
1

t1
[x2|t2]−

1

t1
[x2|t2 − t1]−

1

t2
inv[x1|t1] +

1

t2
inv[x1|t1 − t2].

The coefficient tn1−1
1 tn2−1

2 of the equation in Theorem 4.2, gives (42).

Recall that the proof that [x]n + (−1)n[x−1]n = 0 used that the symbol [∞]n is well defined
and equal to 0. Unfortunately, Ln1,...,nd(x1, . . . , xd) does not tend to 0 when some of the xi tend
to ∞, so we do not expect to be able to simply declare [x1, . . . , xd]n1,...,nd to be 0 when some of
the xi are ∞. Instead we take the equality in Theorem 4.2 as a definition.

Definition 4.5. If some of the xi are ∞, we define

(46) [x1, . . . , xd]n1,...,nd = (−1)d(−1)n1+···+nd inv([x−1d , . . . , x−11 ]n1,...,nd)

when n1 + · · ·+ nd > 1.

For example we have

(47) [x1,∞]n1,n2 = (−1)n2

(
n1 + n2
n1 − 1

)
[x1]n1+n2 , [∞, x2]n1,n2 = −(−1)n1

(
n1 + n2
n2 − 1

)
[x2]n1+n2

Remark 4.6. In weight 1, symbols [∞]1 and [∞]0 are not defined.

Proof of Theorem 4.2. The structure of the proof is similar to that of the depth 1 inversion
relation in Example 3.5. Suppose by induction that it holds in depth less than d and in weight
less than n. The case of depth 1 is the relation [x]n + (−1)n[x−1]n = 0. For X = [x1,...,d|t1,...,d]
let

(48) X−1 = [x−1d,...,1| − td,...,1].

We must prove that X−1 = inv(X). We first prove by induction that δ(X−1)n = δ(invX)n,
which implies that X−1−inv(X) is constant. Setting x1, . . . , xd equal to zero then gives the result
by Definition 4.5. In order to prove that δ(X−1)n = δ(inv(X))n, we consider all possible terms
involved. It will be convenient to think of the xi appearing in each term as formal variables, and
not elements in F . It thus makes sense to talk about inverted terms (those that involve inverses
x−1i ) and regular terms (those that don’t involve inverses). Any identity in the free abelian group

on terms (or their wedge products) gives rise to an identity in Lsymb(F ) (or ∧2(Lsymb(F ))) by
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assigning values to the xi. We shall consider three distinct operations on terms which we all
think of as inversions:

(49) inv, X 7→ X−1, ι,

where inv is defined by (43), X 7→ X−1 by (48), and ι by fixing regular terms and replacing an
inverted term X−1 by inv(X). Letting

(50)
A = [x2,...,d|t2,...,d] B = [x2,...,d|t2,...,d − t1],
C = [x1,...,d−1|t1,...,d−1], D = [x1,...,d−1|t1,...,d−1 − td].

we claim that the following holds in Lsymb(F ):

(51) ι
(
δ(X−1) + (−1)dδ(X)

)
= ι δ

((−1)d

t1
A− (−1)d

t1
B − 1

td
C−1 +

1

td
D−1

)
.

Since the cobracket of X consists entirely of terms of lower depth and weight, where Y −1 =
inv(Y ) by induction, it follows that one has

(52) δ(X−1)n = δ
(
− (−1)dX +

(−1)d

t1
A− (−1)d

t1
B − 1

td
C−1 +

1

td
D−1

)
n

=

δ
(
− (−1)dX +

(−1)d

t1
A− (−1)d

t1
B − 1

td
inv(C) +

1

td
inv(D)

)
n

= δ inv(X)n

in Ln(F ). It remains to prove (51). Using the shorthands

(53)

Yr,s = [xr,...,s|tr,...,s], Yr,s;u = [xr,...,s|tr,...,s − tu]

Y p→q
r,s = [xr,...,p→q,...,s|tr,...,p,q+1,...,s], Y p→q

r,s;u = [xr,...,p→q,...,s|tr,...,p,q+1,...,s − tu]

Zp→qr,s = [xr,...,p→q,...,s|tr,...,p−1,q,...,s], Zp→qr,s;u = [xr,...,p→q,...,s|tr,...,p−1,q,...,s − tu]

we have

(54)

δ(X−1) + (−1)dδ(X) =
(
X + (−1)dX−1

)
∧

d∑
p=1

tp[xp]0+

∑
2≤p≤d

(−1)p
(
Yp,d + (−1)d−p+1Y −1p,d

)
∧ Y −11,p−1+∑

2≤p≤d
Yp,d ∧

(
Y1,p−1 + (−1)p−1Y −11,p−1

)
+

∑
1≤p<q≤d

(
Y p→q
1,d + (−1)d−q+p(Y p→q

1,d )
−1
)
∧ Yp+1,q;p+

∑
1≤p<q≤d

(−1)q−p
(
Zp→q1,d + (−1)d−q+p(Zp→q1,d )

−1
)
∧ Y −1p,q−1;q.

For any regular term W we can define AW , BW , CW , and DW as in (50). If W has depth dW
the definitions of ι and inv imply that

(55) ι
(
W−1 + (−1)dWW

)
= ι

((−1)dW

t1
AW −

(−1)dW

t1
BW −

1

tdW
C−1W +

1

tdW
DW

)
.

Plugging this into 54 it is now straightforward to match up the terms with those on the righthand
side of (51). This concludes the proof. �

Remark 4.7. Even if we don’t allow any symbols with xi =∞ we still expect Theorem 4.2 to
hold, but only up to torsion. For example, one can show that 6([x]2 + [x−1]2) = 0 ∈ L2(F ).
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4.1. A coalgebra without inverted terms. As an aside, we now show that if we change δ by
replacing each term [x−1q−1, . . . , x

−1
p |tq− tp,...,q−1] by inv[xp,...,q−1|tp,...,q−1− tq], we obtain another

cobracket δ′ on Lsymb(F ). Moreover, the groups Rn(F ) defined using δ or δ′ are the same. All
that remains is to show that δ′2 = 0. As in the proof of Theorem 4.2 the argument is purely
symbolic, and makes use of the operation ι.

Lemma 4.8. For a regular term X we have

(56) ι δ(X) = δ′(X), ι δ(X−1) = δ′(inv(X)).

Proof. The first equality follows immediately from the definition of δ′. The second holds in
depth 1, and the general case follows by induction from (51). �

Theorem 4.9. δ′ is a cobracket on Lsymb(F ), i.e. δ′2 = 0.

Proof. Let’s write δ(X) in the form
∑

iX
(i)
1 ∧X

(i)
2 +

∑
j X

(j)
3 ∧X

(j)
4

−1
. By Lemma 4.8 we have

(57)

0 = ι δ2(X) = ι δ

∑
i

X
(i)
1 ∧X

(i)
2 +

∑
j

X
(j)
3 ∧X

(j)
4

−1


=
∑
i

ι δX
(i)
1 ∧X

(i)
2 −X

(i)
1 ∧ ι δX

(i)
2 +

∑
j

ι δX
(j)
3 ∧ invX

(j)
4 −X

(j)
3 ∧ ι δX

(j)
4

−1

=
∑
i

δ′X
(i)
1 ∧X

(i)
2 −X

(i)
1 ∧ δ

′X
(i)
2 +

∑
j

δ′X
(j)
3 ∧ invX

(j)
4 −X

(j)
3 ∧ δ

′ invX
(j)
4

= δ′

∑
i

X
(i)
1 ∧X

(i)
2 +

∑
j

X
(j)
3 ∧ invX

(j)
4

 = δ′2(X).

This proves the result. �

5. Shuffle relations

Since the multiple polylogarithms are iterated integrals they satisfy shuffle relations (see
e.g. [Gon01, Sec. 2.5]). For example, one has

(58) Lin1(x1) Lin2(x2) = Lin1,n2(x1, x2) + Lin2,n1(x2, x1) + Lin1+n2(x1x2).

This motivates us to define shuffle products

(59) [x1]n1 [x2]n2 = [x1, x2]n1,n2 + [x2, x1]n2,n1 + [x1x2]n1+n2 ∈ Ln1+n2(F ).

In terms of power series this is equivalent to

(60) [x1|t1][x2|t2] = [x1, x2|t1, t2] + [x2, x1|t2|t1] +
1

t1 − t2
([x1x2|t1]− [x1x2|t2]).

Similarly, we define a shuffle product

(61) [x1, x2|t1, t2][x3|t3] = [x1, x2, x3|t1, t2, t3] + [x1, x3, x2|t1, t3, t2] + [x3, x1, x2|t3, t1, t2]

+
1

t1 − t3
(
[x1x3, x2|t1, t2]− [x1x3, x2|t3, t2]

)
+

1

t2 − t3
(
[x1, x2x3|t1, t2]− [x1, x2x3|t1, t3]

)
corresponding to the shuffle relations for Lin1,n2(x1, x2) Lin3(x3).

Theorem 5.1. The shuffle products [x1|t1][x2|t2] and [x1, x2|t1, t2][x3, t3] are zero in L(F ).
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Proof. A simple computation shows that

(62) δ([x1|t1][x2|t2]) = ([x1|t1][x2|t2]) ∧ (t1[x1]0 + t2[x2]0) ∈ ∧2(L(F )).

Assuming by induction that ([x1|t1][x2|t2])n−1 = 0 it follows that ([x1|t1][x2|t2])n is constant.
Setting x1 = x2 = 0 shows that the constant is 0. Another straightforward computation shows
that

(63) δ([x1, x2|t1, t2][x3|t3]) = ([x1, x2|t1, t2][x3|t3]) ∧
3∑
i=1

ti[xi]0 − [x1|t1] ∧ ([x2|t2][x3|t3])

+ [x2|t2]∧ ([x1|t1][x3|t3]) + ([x1x2|t1][x3|t3])∧ [x2|t2− t1]− ([x1x2|t2][x3|t3])∧ ([x1|t1− t2] + [x1]0)

+ [x1x2x3|t1] ∧ ([x2|t2 − t1][x3|t3 − t1])− [x1x2x3|t2] ∧ ([x1|t1 − t2][x3|t3 − t2]),
so the same argument as above shows that [x1, x2|t1, t2][x3, t3] = 0 as well. �

Remark 5.2. We can similarly define shuffle products in arbitrary depth. We conjecture that
they are all zero in L(F ). Proving this would require showing that the cobracket of a shuffle
relation is given in terms of shuffle relations in lower weight and depth. This appears to be the
case.

Remark 5.3. It seems worth noting that if one replaces δ by δ′, (62) and (63) hold not just in
∧2(L(F )), but also ∧2(Lsymb(F )) (and not just modulo 2-torsion).

6. The Goncharov–Rudenko Lie coalgebra

Goncharov and Rudenko [GR18] also considered the problem of explicitly constructing the
motivic Lie-coalgebra. They give an explicit construction in weight 4 and less. We denote their
coalgebra LGR≤4 (F ). They define LGR1 (F ) = F ∗, LGR2 (F ) = B2(F ), and define (for n = 3, 4)

LGRn (F ) to be the group generated by symbols {x}n and {x, y}n−1,1 subject to certain relations,
most notably a relation Qn. The relationship with their work and ours is given in Theorem 6.1
below. Its proof is straightforward, but long, so we omit it. The main point is to show that Qn
maps to an element in Rn(F ). We stress that their symbol {x, y}n−1,1 does not correspond to
our symbol [x, y]n−1,1. We find our symbol more natural since it directly relates to the multiple
polylogarithm (their symbol is related to motivic correlators).

Theorem 6.1. There is a surjective map LGR≤4 (F )Q → L≤4(F )Q taking {x}n to [x]n, {x, y}2,1
to −[x/y, y]2,1 − [x]3 − [y]3 and {x, y}3,1 to −[x/y, y]3,1 − [x]4 + [y]4. The map preserves the
cobracket.

Remark 6.2. We suspect that the map is an isomorphism, but we do not know if all of our
relations can be expressed in terms of the Qn relations.
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