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THE EXTENDED BLOCH GROUP AND

ALGEBRAIC K–THEORY

CHRISTIAN K. ZICKERT

Abstract. We define an extended Bloch group for an arbitrary field F , and
show that this group is naturally isomorphic to K ind

3
(F ) if F is a number

field. This gives an explicit description of K ind
3

(F ) in terms of generators and
relations. We give a concrete formula for the regulator, and derive concrete
symbol expressions generating the torsion. As an application, we show that
a hyperbolic 3–manifold with finite volume and invariant trace field k has a
fundamental class in K ind

3
(k)⊗ Z[ 1

2
].

1. Introduction

The extended Bloch group B̂(C) was introduced by Walter Neumann [12] in
his computation of the Cheeger–Chern–Simons class related to PSL(2,C). It is
a Q/Z–extension of the classical Bloch group B(C), and was used by Neumann
to give explicit simplicial formulas for the volume and Chern–Simons invariant of
hyperbolic 3–manifolds; see also Zickert [21]. There are two distinct versions of
the extended Bloch group. One is isomorphic to H3(PSL(2,C)

δ) and the other is
isomorphic to H3(SL(2,C)

δ). The δ denotes that the groups are regarded as discrete
groups, and will from now on be omitted. For a discussion of the relationship
between the two versions of the extended Bloch group, see Goette–Zickert [5].

In Section 3, we define an extended Bloch group for an arbitrary field F . More

precisely, we show that there is an extended Bloch group B̂E(F ) for each extension
E of F ∗ by Z, which only depends on the class of E in Ext(F ∗,Z). The original
extended Bloch group is the extended Bloch group associated to the extension of
C∗ given by the exponential map. For a large class of fields, including number

fields and finite fields, the extended Bloch groups B̂E(F ) are isomorphic, and can

be glued together to form an extended Bloch group B̂(F ) which only depends on
F , and admits a natural Galois action. This is studied in Section 4.

By a result of Suslin [18], the classical Bloch group B(F ) of an (infinite) field F
is isomorphic to the algebraic K–group K ind

3 (F ) modulo torsion. More precisely,
Suslin proves that there is an exact sequence

(1.1) 0 → µ̃F → K ind

3 (F ) → B(F ) → 0,

where µF denotes the roots of unity in F , and µ̃F is the unique non-trivial extension
of µF by Z/2Z (in characteristic 2, µ̃F = µF ). Our main result is the following.

Theorem 1.1. For every number field F , there is a natural isomorphism

λ̂ : K ind

3 (F ) ∼= B̂(F )

respecting the Galois actions. �
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In Section 9 we give the following geometric application generalizing a result of
Goncharov [6], who proved the existence of a fundamental class in K ind

3 (Q)⊗Q.

Theorem 1.2. Let M be a complete, oriented, hyperbolic 3–manifold of finite vol-
ume. Let K and k denote the trace field and invariant trace field of M . If M is
closed, M has a fundamental class [M ] in K ind

3 (K) defined up to two-torsion, and
satisfying that 2[M ] ∈ K ind

3 (k). If M has cusps, there is a fundamental class [M ]
in K ind

3 (k)⊗ Z[ 12 ] such that 8[M ] is in K ind
3 (k). �

The result is proved using both concrete properties of the extended Bloch group
and abstract properties of K ind

3 (F ).
There is a regulator map

R : K ind

3 (C) → C/4π2Z.

The regulator is equivariant with respect to complex conjugation, so if F is a number
field, we obtain a regulator

(1.2) B̂ : K ind

3 (F ) → (R/4π2Z)r1 ⊕ (C/4π2Z)r2 ,

where r1 and r2 are the number of real and (conjugate pairs of) complex embeddings
of F in C. This regulator fits into a diagram

K ind
3 (F )

B̂
//

��

(R/4π2Z)r1 ⊕ (C/4π2Z)r2

��

B(F )
B

// Rr2 ,

where the left vertical map is the map in (1.1), and the right vertical map is pro-
jection onto the imaginary part. The lower map B is known as the Borel regulator
and has been extensively studied. It is related to hyperbolic volume, and it is
known that the image in Rr2 is a lattice whose covolume is proportional to the zeta
function of F evaluated at 2. We refer to Zagier [20] for a survey. The upper map
is much less understood. The real part is related to the Chern-Simons invariant,
but little is known about its relations to number theory.

In section 4, we give a concrete formula for B̂ defined on the extended Bloch

group B̂(F ) = K ind
3 (F ). Elements in B̂(F ) are easy to produce, e.g. using computer

software like PARI/GP, and our result can thus provide lots of experimental data

for studying the map B̂. We give an example in Example 4.12.
The torsion in K ind

3 (F ) is known to be cyclic of order w = 2
∏

pνp , where

νp = max{ν | ξpν + ξ−1pν ∈ F}.

The product, which is easily seen to be finite, is over all rational primes, and ξpν is
a primitive root of unity of order pν . This result is due to Merkurjev–Suslin [10];
see also the survey paper Weibel [19].

In Section 8, we give explicit elements in B̂(F ) generating the torsion. As a
corollary, this gives explicit generators of the torsion in the Bloch group. We state
this result below. Let B(F )p denote the elements in B(F ) of order a power of p.

By (1.1), the order of B(F )p is pν
′

p , where ν′p = νp − max{ν | ξpν ∈ F}.
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Theorem 1.3. Let F be a number field and let p be a prime number with ν′p > 0.
Let x be a primitive root of unity of order pνp . The elements

βp =

pνp∑

k=1

[
(xk+1 + x−k−1)(xk−1 + x−k+1)

(xk + x−k)2

]
,

β2 =

2ν2−1∑

k=1

[
(xk+1 − x−k)(xk−1 − x−k+2)

(xk − x−k+1)2

]

generate B(F )p for odd p and p = 2, respectively. �

Note that the torsion in the Bloch group comes from a totally real abelian subfield
of F .

Remark 1.4. The torsion in the Bloch group of a number field is related to conformal
field theory, and there is an interesting conjecture relating torsion in the Bloch group
to modularity of a certain q–hypergeometric function. See Nahm [11], or Zagier [20].

Acknowledgements. I wish to thank Ian Agol, Johan Dupont, Stavros Garoufa-
lidis, Matthias Goerner, Dylan Thurston and, in particular, Walter Neumann for
helpful discussions. I also wish to thank Walter Neumann for his comments on
earlier drafts of the paper. Parts of this work was done during a visit to the Max
Planck Institute of Mathematics, Bonn. I wish to thank MPIM for its hospitality,
and for providing an excellent working environment.

2. Preliminaries

For an abelian group A, we define

∧2(A) = A⊗Z A
/
〈a⊗ b+ b⊗ a〉.

Note that 2a ∧ a = 0, but a ∧ a is generally not 0.
For a set X , we let Z[X ] denote the free abelian group generated by X .

2.1. The classical Bloch group. Let F be a field and let F ∗ be the multiplicative
group of units in F . Consider the set of five term relations

FT =
{(

x, y,
y

x
,
1− x−1

1− y−1
,
1− x

1− y

) ∣∣ x 6= y ∈ F \ {0, 1}
}
.

One can show that there is a chain complex

(2.1) Z[FT]
ρ

// Z[F \ {0, 1}] ν
// ∧2(F ∗) ,

with maps defined by

ρ([z0, . . . , z4]) = [z0]− [z1] + [z2]− [z3] + [z4],

ν([z]) = z ∧ (1− z).

Remark 2.1. By Matsumoto’s theorem, the cokernel of ν is K2(F ).

Definition 2.2. The Bloch group of F is the quotient B(F ) = Ker(ν)/ Im(ρ). It is
a subgroup of the pre-Bloch group P(F ) = Z[F \ {0, 1}]/ Im(ρ).
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2.2. The extended Bloch group of C. The original reference is Neumann [12];
see also Dupont–Zickert [2] and Goette–Zickert [5]. We stress that our extended
Bloch group is what Neumann calls the more extended Bloch group [12, Section 8].

Consider the set

Ĉ =
{
(w0, w1) ∈ C2

∣∣ exp(w0) + exp(w1) = 1
}
.

We will refer to elements of Ĉ as flattenings. We can view Ĉ as the Riemann surface
for the multivalued function (log(z), log(1− z)), and we can thus write a flattening
as [z; 2p, 2q] = (log(z)+2pπi, log(1− z)+2qπi). This notation depends on a choice

of logarithm branch which we will fix once and for all. The map π : Ĉ → C \ {0, 1}
taking a flattening [z; 2p, 2q] to z is the universal abelian cover of C \ {0, 1}.
Remark 2.3. Neumann considered the Riemann surface of (log(z),− log(1−z)), and
considered a flattening [z; 2p, 2q] as a triple (w0, w1, w2), with w0 = log(z) + 2pπi,
w1 = − log(1 − z) + 2qπi and w2 = −w1 − w0. One translates between the two
definitions by changing the sign of w1, or equivalently, by changing the sign of q.

Let FT0 =
{
(x0, . . . , x4) ∈ FT

∣∣ 0 < x1 < x0 < 1
}
, and define the set of lifted five

term relations F̂T ⊂ (Ĉ)5 to be the component of the preimage of FT containing
all points

(
[x0; 0, 0], . . . , [x4; 0, 0]

)
with (x0, . . . , x4) ∈ FT0.

There is a chain complex

(2.2) Z[F̂T]
ρ̂

// Z[Ĉ]
ν̂

// ∧2(C),

with maps defined by

ρ̂([(w0
0 , w

0
1), . . . , (w

4
0 , w

4
1)]) =

4∑

i=0

(−1)i[(wi
0, w

i
1)],

ν̂([(w0, w1)]) = w0 ∧ w1.

Definition 2.4. The extended Bloch group is the quotient B̂(C) = Ker(ν̂)/ Im(ρ̂).

It is a subgroup of the extended pre-Bloch group P̂(C) = Z[Ĉ]/ Im(ρ̂).

Theorem 2.5. Let µC denote the roots of unity in C∗. There is a commutative
diagram as below with exact rows and columns. �

(2.3)

0

��

0

��

0

��

0 // µC //

χ

��

C∗ //

χ

��

C∗/µC
//

β

��

0

��

0 // B̂(C) //

π

��

P̂(C)
ν̂

//

π

��

∧2(C) //

ǫ

��

K2(C) // 0

0 // B(C) //

��

P(C)
ν

//

��

∧2(C∗)

��

// K2(C) //

��

0

0 0 0 0
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We refer to Goette–Zickert [5] or Section 3 below for the definition of χ. The
other maps are defined as follows:

β([z]) = log(z) ∧ 2πi;

ǫ(w1 ∧ w2) = exp(w1) ∧ exp(w2);

π([z; 2p, 2q]) = [z].

Remark 2.6. There is a similar definition of P̂(F ) and B̂(F ) for a subfield F of C.
Theorem 2.5 holds if one replaces ∧2(C) by ∧2({w ∈ C | exp(w) ∈ F ∗}) and µC

with µ̃F = {w ∈ C | w2 ∈ µF }. We will generalize to arbitrary fields below.

2.2.1. The regulator. The function R : Ĉ → C/4π2, given by

(2.4) [z; 2p, 2q] 7→ Li2(z) +
1

2
(log(z) + 2pπi)(log(1− z)− 2qπi)− π2/6

is well defined and holomorphic, see e.g. Neumann [12] or Goette–Zickert [5].
It is well known that L(z) = Li2(z) +

1
2 log(z) log(1− z)− π2/6 satisfies

4∑

i=1

(−1)iL(zi) = 0 for (z0, . . . , z4) ∈ FT0,

and it thus follows by analytical continuation that R gives rise to a function

(2.5) R : P̂(C) → C/4π2Z.

We briefly describe a more elegant definition of R due to Don Zagier [20]: The
derivative of Li2(z) is − log(1−z)/z. It follows that the function F (x) = Li2(1−ex)
has derivative F ′(x) = xex/(1−ex). Since this function is meromorphic with simple
poles at 2πin, n ∈ Z, with corresponding residues −2πin, it follows that F defines
a single valued function on C \ {2πiZ} with values in C/4π2Z. We can now define

(2.6) R : Ĉ → C/4π2, (w0, w1) 7→ F (w1) +
w0w1

2
− π2/6.

We leave it to the reader to show that this definition of R agrees with the one
above.

2.3. Algebraic K–theory and homology of linear groups. We give a brief
review of the results that we shall need.

Let F be a field. The algebraic K–groups are defined by Ki(F ) = πi(BGL(F )+).
The Milnor K–groups KM

∗ (F ) are defined as the quotient of the tensor algebra of
F ∗ by the two-sided ideal generated by a⊗ (1− a). There is a natural map

KM
i (F ) → Ki(F )

whose cokernel, by definition, is the indecomposable K–group K ind
i (F ).

For F = C, there is a regulator R defined as the composition

K2k−1(C)
H

// H2k−1(GL(C))
ĉk

// C/(2πi)kZ ,

where H is the Hurewicz map, and ĉk is the universal Cheeger–Chern–Simons class.
It is well known that R is 0 on the image of KM

2k−1(C), so R induces a regulator

K ind

2k−1(C) → C/(2πi)kZ.
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Theorem 2.7 (Suslin [17]). For any field F , there is an isomorphism

Hn(GL(n, F )) ∼= Hn(GL(F ))

induced by inclusion. �

Theorem 2.8 (Sah [16]). K ind
3 (C) is a direct summand of K3(C) and the Hurewicz

map H induces an isomorphism K ind
3 (C) ∼= H3(SL(2,C)). �

Theorem 2.9 (Goette–Zickert [5]; see also Neumann [12]). There is a canonical

isomorphism H3(SL(2,C)) ∼= B̂(C). Under this isomorphism, ĉ2 corresponds to the
map R in (2.4). �

Theorem 2.10 (Dupont–Sah [1]). The diagonal map x 7→
(
x 0
0 x−1

)
induces an

injection H3(µC) → H3(SL(2,C)) onto the torsion subgroup of H3(SL(2,C)). �

3. The extended Bloch group of an extension

Let F be a field and let

E : 0 // Z
ι

// E
π

// F ∗ // 0

be an extension of F ∗ by Z. We stress that the letter E is used both to denote the
extension and the middle group. As we shall see, most of the results in Neumann [12]
and Goette–Zickert [5] can be formulated in this purely algebraic setup.

Definition 3.1. The set of (algebraic) flattenings is the set

F̂E =
{
(e, f) ∈ E × E

∣∣ π(e) + π(f) = 1 ∈ F
}
.

The map (e, f) 7→ π(e) induces a surjection π : F̂E → F \ {0, 1}, and we say that
(e, f) is a flattening of π(e).

Recall the set of five term relations

FT =
{(

x, y,
y

x
,
1− x−1

1− y−1
,
1− x

1− y

) ∣∣ x 6= y ∈ F \ {0, 1}
}
.

Definition 3.2. The set of lifted five term relations F̂TE ⊂ (F̂E)
5 is the set of

tuples of flattenings
(
(e0, f0), . . . , (e4, f4)

)
satisfying

e2 = e1 − e0

e3 = e1 − e0 − f1 + f0

f3 = f2 − f1

e4 = f0 − f1

f4 = f2 − f1 + e0.

(3.1)

If
(
(e0, f0), . . . , (e4, f4)

)
∈ F̂TE , where (ei, fi) is a flattening of xi ∈ F \ {0, 1},

then (3.1) implies that

x2 =
x1

x0
, x3 =

x1

x0

(1− x0)

(1− x1)
=

1− x−10

1− x−11

, x4 =
1− x0

1− x1
.

Hence, a lifted five term relation is indeed a lift of a five term relation. On the other
hand, if (x0, . . . , x4) ∈ FT it is not difficult to check that there exist flattenings

(ei, fi) satisfying (3.1). Hence, the map π : F̂TE → FT is surjective.
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Consider the complex

(3.2) Z[F̂TE ]
ρ̂

// Z[F̂E ]
ν̂

// ∧2(E) ,

with maps defined by

ρ̂
(
(e0, f0), . . . , (e4, f4)

)
=

4∑

i=0

(−1)i(ei, fi),

ν̂(e, f) = e ∧ f.

Lemma 3.3. The complex (3.2) is a chain complex, i.e. ν̂ ◦ ρ̂ = 0.

Proof. Let α =
(
(e0, f0), . . . , (e4, f4)

)
∈ F̂TE . Using (3.1) we have

ν̂ ◦ ρ̂(α) =
4∑

i=0

(−1)iei ∧ fi = e0 ∧ f0 − e1 ∧ f1 + (e1 − e0) ∧ f2

− (e1 − e0 − f1 + f0) ∧ (f2 − f1) + (f0 − f1) ∧ (f2 − f1 + e0)

=e0 ∧ (f0 − f1) + (f0 − f1) ∧ e0 = 0 ∈ ∧2(E). �

Definition 3.4. The extended pre-Bloch group P̂E(F ) is the quotient Z[F̂E ]/ Im(ρ̂).

The extended Bloch group B̂E(F ) is the quotient Ker(ν̂)/ Im(ρ̂).

Example 3.5. The extended Bloch group B̂(C) is the extended Bloch group asso-
ciated to the extension

(3.3) 0 // Z
2πi

// C
exp

// C∗ // 0.

The extended groups fit together with the classical groups in a diagram

B̂E(F ) //

��

P̂E(F )

��

ν̂
// ∧2(E)

��

B(F ) // P(F )
ν

// ∧2(F ∗),

where the vertical maps are surjections.

3.1. Relations in the extended Bloch group. We now derive some relations

in P̂E(F ). We encourage the reader to compare with Neumann [12] and Goette–

Zickert [5] where similar relations are derived in P̂(C) using analytic continuation.
In the following we will regard Z as a subgroup of E. Consider the set

(3.4) V =
{(

(p0, q0), (p1, q1), (p1 − p0, q2), (p1 − p0 − q1 + q0, q2 − q1),

(q0 − q1, q2 − q1 + p0)
) ∣∣ p0, p1, q0, q1, q2 ∈ Z

}
⊂ (Z× Z)5,

also considered by Neumann [12, Definition 2.2].
By (3.1) it follows that componentwise addition gives rise to an action

+: F̂TE × V → F̂TE , (α, v) 7→ α+ v.

Lemma 3.6. Let q, q′, q̄, q̄′ be integers satisfying q−q′ = q̄− q̄′. For each flattening

(e, f) ∈ F̂E we have

(3.5) (e, f + q)− (e, f + q′) = (e, f + q̄)− (e, f + q̄′) ∈ P̂E(F ).
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Proof. Let α =
(
(e0, f0), . . . , (e4, f4)

)
∈ F̂TE . For each integer r, consider the

element vr ∈ V given by

vr =
(
(0, r), (0, r), (0, r), (0, 0), (0, 0)

)
.

The relation ρ̂(α+ vq)− ρ̂(α + vq′) = 0 ∈ P̂E(F ) can be written as

(3.6) (e0, f0 + q)− (e0, f0 + q′)−
(
(e1, f1 + q)− (e1, f1 + q′)

)

+ (e2, f2 + q)− (e2, f2 + q′) = 0 ∈ P̂E(F ).

Let β = α +
(
(0, 0), (0, s), (0, s), (−s, 0), (−s, 0)

)
, where s = q − q̄ = q′ − q̄′. Then

β ∈ F̂TE , and the relation ρ̂(β + vq̄)− ρ̂(β + vq̄′) = 0 ∈ P̂E(F ) becomes

(3.7) (e0, f0 + q̄)− (e0, f0 + q̄′)−
(
(e1, f1 + q)− (e1, f1 + q′)

)

+ (e2, f2 + q)− (e2, f2 + q′) = 0 ∈ P̂E(F ).

The result now follows by subtracting (3.7) from (3.6). �

Corollary 3.7. Let e ∈ E \ Z. The element

(e, f + 1)− (e, f) ∈ P̂E(F )

is independent of f whenever (e, f) is in F̂E. �

Using Corollary 3.7, we can define a map

(3.8) χ : E \ Z → P̂E(F ), e 7→ (e, f + 1)− (e, f).

Lemma 3.8. Suppose e, e′ and e+ e′ are elements in E \ Z. We have

(3.9) χ(e) + χ(e′) = χ(e+ e′).

Proof. This follows from (3.6) after noting that e1 = e0 + e2. �

The following is elementary.

Lemma 3.9. Let G and G′ be groups and let H be a subgroup of G of index greater
than 2. Suppose φ : G \H → G′ is a map satisfying φ(g1g2) = φ(g1)φ(g2) whenever
both sides are defined. Then φ extends uniquely to a homomorphism φ : G → G′. �

Corollary 3.10. The map χ : E \Z → P̂E(F ) extends to a homomorphism defined
on all of E. �

Lemma 3.11. For any two flattenings (e, f), (g, h) ∈ F̂E we have

(e, f) + (f, e) = (g, h) + (h, g) ∈ B̂E(F ).

Proof. It follows from (3.1) that
(
(e0, f0), (e1, f1), (e2, f2), (e3, f3), (e4, f4)

)
∈ F̂TE

if and only if
(
(f1, e1), (f0, e0), (e4, f4), (e3, f3), (e2, f2)

)
∈ F̂TE . Subtracting the

two relations in P̂E(F ) yields

(e0, f0)− (e1, f1) = (f1, e1)− (f0, e0) ∈ P̂E(F ),

from which the claim follows. Since e ∧ f + f ∧ e = 0 ∈ ∧2(E), the element lies in

B̂E(F ). �

Lemma 3.12. The homomorphism χ : E → P̂E(F ) takes 2Z ⊂ E to 0.
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Proof. Let e ∈ E be any element not in Z. The result follows from the computation

χ(1) = χ(e+ 1)− χ(e)

= (e+ 1, f + 1)− (e + 1, f)− (e, f + 1) + (e, f)

= −(f + 1, e+ 1) + (f, e+ 1) + (f + 1, e)− (f, e)

= −χ(f + 1) + χ(f)

= −χ(1),

(3.10)

where the third equality follows from Lemma 3.11. �

Theorem 3.13. There is an exact sequence

(3.11) E/2Z
χ

// P̂E(F )
π

// P(F ) // 0.

Proof. It is clear that π ◦ χ = 0 and that π is surjective. Since every five term
relation lifts to a lifted five term relation, the kernel of π must be generated by
elements of the form (e+ p, f + q)− (e, f). By Lemma 3.6 we have,

(3.12) (e, f + q) = (e, f + q − 1) + (e, f + 1)− (e, f)

= q(e, f + 1)− q(e, f) + (e, f) = qχ(e) + (e, f),

and we see that (e, f+q)−(e, f) is in Im(χ). Using Lemma 3.11 we similarly obtain

(3.13) (e + p, f)− (e, f) = −pχ(f) ∈ Im(χ),

and the result follows. �

Remark 3.14. We do not know if χ is injective, but we expect this to be the case.
In the next section, we show that χ is injective if F is a number field and E is a
primitive extension.

Remark 3.15. If E is the extension in Example 3.5, the exact sequence (3.11) is
equivalent to the corresponding exact sequence in Theorem 2.5 using the identi-
fication of C∗ with E/2Z = C/4πiZ taking z ∈ C∗ to −2 log(z) ∈ C/4πiZ. The

restriction of the regulator (2.4) to C/4πiZ ⊂ P̂(C) is multiplication by −πi.

Lemma 3.16. The following equality holds in P̂E(F ).

(e+ p, f + q)− (e, f) = χ(qe− pf + pq).

Proof. This is an easy consequence of (3.12) and (3.13). �

3.2. Functoriality. Let F1 and F2 be fields and let E1 and E2 be extensions of
F ∗1 and F ∗2 by Z.

Definition 3.17. A map Ψ: E1 → E2 of extensions is called a covering if the base
homomorphism Ψ: F ∗1 → F ∗2 extends to an embedding of F1 in F2. Two coverings
are equivalent if they cover the same embedding.

A covering Ψ: E1 → E2 gives rise to a chain map

Z[F̂TE1 ]
ρ̂1

//

Ψ∗

��

Z[F̂E1 ]
ν̂1

//

Ψ∗

��

∧2(E1)

Ψ∧Ψ

��

Z[F̂TE2 ]
ρ̂2

// Z[F̂E2 ]
ν̂2

// ∧2(E2)
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defined by taking an algebraic flattening (e, f) to (Ψ(e),Ψ(f)). We thus obtain
maps

(3.14) Ψ∗ : P̂E1(F1) → P̂E2(F2), Ψ∗ : B̂E1(F1) → B̂E2(F2),

satisfying the usual functoriality properties.

Lemma 3.18. Let Ψ: E1 → E2 be a covering. There is a commutative diagram of
exact sequences

E1/2Z
χ

//

Ψ∗

��

P̂E1
(F1)

π
//

Ψ∗

��

P(F1) //

Ψ∗

��

0

E2/2Z
χ

// P̂E2(F2)
π

// P(F2) // 0.

The map Ψ∗ : E1/2Z → E2/2Z takes e ∈ E1/2Z to Ψ(1)Ψ(e) ∈ E2/2Z, where
Ψ(1)Ψ(e) is defined using the natural action of Z ⊂ E2 on E2 by multiplication.

Proof. Exactness follows from Theorem 3.13. Commutativity of the right square is
obvious, and commutativity of the left square follows from the computation

Ψ∗(χ(e)) =
(
Ψ(e),Ψ(f) + Ψ(1)

)
−
(
Ψ(e),Ψ(f)

)
= χ

(
Ψ(1)Ψ(e)

)
,

where the second equality follows from Lemma 3.16. �

We wish to prove that the induced map Ψ∗ : B̂E1(F1) → B̂E2(F2) of a covering
only depends on the underlying embedding. The result below is elementary.

Lemma 3.19. Let F be a field. The torsion subgroup Tor(F ∗) is isomorphic to a
subgroup of Q/Z. For any extension E of F ∗ by Z, the same is true for Tor(E). �

Lemma 3.20. An element
∑

i niei∧fi is zero in ∧2(E) if and only if we can write

(3.15) ei = kiw +
∑

j
rijpj , fi = liw +

∑
j
sijpj,

where pj ∈ E, w ∈ E is a torsion element, and the integers sij,rij ,ki and li satisfy

(i)
∑

i nirijsij is even for each j;
(ii)

∑
i ni(rijsik − riksij) = 0 for each j 6= k;

(iii)
∑

i ni(lirij − kisij) is divisible by ord(w) for each j;
(iv)

∑
i nikili is even.

Proof. Let α =
∑

i niei ∧ fi. Since ∧2 commutes with direct limits, there exists a
finitely generated subgroup H , containing the ei’s and fi’s, such that α is zero in
∧2(E) if and only if α is zero in ∧2(H). Let pj be free generators of H and let w be
a generator of the torsion (which is cyclic by Lemma 3.19). Write the ei’s and fi’s
as in (3.15). When expanding α ∈ ∧2(H), the coefficients of pj ∧ pj , pj ∧ pk, pj ∧w
and w ∧ w of ∧2(H) are given, respectively, by (i)-(iv). Hence, α = 0 ∈ ∧2(H) if
(i)-(iv) hold. On the other hand, if α = 0 ∈ ∧2(H), (i)-(iii) hold, whereas (iv) may
fail if w ∧ w = 0 ∈ ∧2(H). This happens if and only if w is 2–divisible, in which
case, we may replace w by a half if necessary, to make (iv) hold as well. �

Theorem 3.21. If Ψ1,Ψ2 : E1 → E2 are equivalent coverings then

(3.16) Ψ1∗ = Ψ2∗ : B̂E1(F1) → B̂E2(F2).
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Proof. For notational simplicity, we assume that Ψ1 = id, and drop the subscripts
of Fi and Ei. This case is sufficient for most of the applications. We leave the
general proof, which differs only in notation, to the reader.

Let φ = Ψ2 − Ψ1 : E1 → Z ⊂ E2 and let α =
∑

ni(ei, fi) ∈ B̂E(F ). We wish to
prove that

(3.17) ∆ := Ψ2∗(α)−Ψ1∗(α) =
∑

i
ni

((
ei + φ(ei), fi + φ(fi)

)
− (ei, fi)

)

is zero in B̂E(F ). By Lemma 3.16, we have

(3.18) ∆ = χ
(∑

i
ni

(
φ(fi)ei − φ(ei)fi + φ(ei)φ(fi)

))
.

Since α ∈ B̂E(F ), we have ν̂(α) =
∑

niei ∧ fi = 0 ∈ ∧2(E). By Lemma 3.20, we
can write

ei = kiw +
∑

j
rijpj , fi = liw +

∑
j
sijpj,

where (i)-(iv) in Lemma 3.20 are satisfied. Let aj = φ(pj). Let T denote the sum
in (3.18), i.e. χ(T ) = ∆. Since w is a torsion element, φ(w) = 0, so by (3.18) we
have

(3.19) T =
∑

i
ni

(∑
j
sijaj

(∑
j
rijpj + kiw

)
−

∑
j
rijaj

(∑
j
sijpj + liw

)
+
∑

j
rijaj

∑
j
sijaj

)
.

When expanding the sum, the coefficient of pk is
∑

i
ni

(∑
j
sijaj

)
rik −

∑
i
ni

(∑
j
rijaj

)
sik = −

∑
j
aj

∑
i
ni(rijsik − sijrik),

which is zero by Lemma 3.20, (ii). Similarly, the coefficient of w is
∑

i
ni

(∑
j
ajkisij −

∑
j
aj lirij

)
= −

∑
j
aj

∑
i
ni(lirij − kisij),

which, by Lemma 3.20, (iii), is divisible by the order of w. Finally, the remaining
terms sum to the integer
∑

i
ni

(∑
j
rijaj

∑
j
sijaj

)
=

∑
i
ni

(∑

j 6=k

rijsikajak

)
+
∑

j
a2j

∑
i
nirijsij ,

which is even by Lemma 3.20, (i) and (ii). Hence, T is zero in E/2Z, so ∆ = χ(T )
is also zero. �

Corollary 3.22. Up to canonical isomorphism, the extended Bloch group B̂E(F )
depends only on the class of E in Ext(F ∗,Z).

Proof. If E1 = E2 ∈ Ext(F ∗,Z), there must exist a covering Ψ: E1 → E2 of the
identity on F . Since any two such coverings are equivalent, the result follows. �

3.3. General properties of extensions. Let µF ⊂ F ∗ denote the roots of unity
in F . For a prime number p let µp denote the pth roots of unity in µF , and let µp∞

be the subgroup of roots of unity of order a power of p. Note that µF = ⊕µp∞ .
Also note that up to isomorphism, µp∞ is either Z/pnZ or Z[1/p]/Z. We have
the following classification of Z–extensions of Z/pnZ and Z[1/p]/Z. The proofs are
elementary and left to the reader.
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Lemma 3.23. We have Ext(Z/pnZ,Z) = Z/pnZ. Let 0 ≤ k ≤ n− 1 and let x be
an integer which is not divisible by p. The non-trivial extensions are given explicitly
by

(3.20) 0 // Z
ι

// Z⊕ Z/pkZ
π

// Z/pnZ // 0 ,

where the maps are defined by

(3.21) ι(1) = (pn−k,−x), π(a, b) = xa+ pn−kb.

The equivalence class of (3.20) only depends on the value of x in (Z/pn−kZ)∗, and
the order of the extension in Ext(Z/pnZ,Z) is pn−k. �

Lemma 3.24. We have Ext(Z[ 1p ]/Z,Z) = Zp, the p–adic integers. Let 0 ≤ k be

an integer and let y be a p–adic integer with discrete valuation k. The non-trivial
extensions are given explicitly by

(3.22) 0 // Z
ι

// Z[ 1p ]⊕ Z/pkZ π
// Z[ 1p ]

/
Z // 0,

where the maps are defined by

(3.23) ι(1) = (1/pk,−y/pk), π(a, b) =
ay + b

pk
.

�

Definition 3.25. An extension E is called primitive if E is torsion free. If µp is
non-trivial, and if the restriction Eµp∞

is torsion free, we say that E is p–primitive.

We state some elementary corollaries of Lemma 3.23 and Lemma 3.24.

Corollary 3.26. E is p–primitive if and only if 1 ∈ E is divisible by p. If so, 1 is
divisible by |µp∞ | (if |µp∞ | = ∞, 1 is divisible by p infinitely often). �

Corollary 3.27. Suppose µF is finite. Then E is primitive if and only if EµF

generates Ext(µF ,Z). In this case EµF
is free of rank one. Letting x̃ denote a

generator, the extension is given explicitly by

(3.24) EµF
: 0 // Z

ιx
// EµF

πx
// µF // 0 ,

where ιx takes 1 to |µF |x̃ and πx takes x̃ to a primitive root of unity x. �

Lemma 3.28. Suppose E is p–primitive for an odd prime p. Then ∧2(Eµp∞
) =

Z/2Z generated by 1 ∧ 1. If E is also 2–primitive, the map ∧2(Eµp∞
) → ∧2(E) is

0. Otherwise it is injective.

Proof. We assume that Eµp∞
∼= Z[1/p] leaving the simpler case Eµp∞

∼= Z to the

reader. It is easy to see that Z[1/p] is 2–torsion generated by elements p−k ∧ p−k,
and since p is odd, p−k ∧ p−k = p2k(p−k ∧ p−k) = 1 ∧ 1. By Corollary 3.26, 1 is
2–divisible in E if and only if E is 2–primitive. This concludes the proof. �

Note that a primitive extension is 2–primitive if and only if the characteristic of
F is not 2. This is because µ2 is trivial in characteristic 2 and non-trivial otherwise.

Proposition 3.29. Let E be a primitive extension and let E(µF ) = 2EµF
if the

characteristic of F is 2 and E(µF ) = EµF
otherwise. We have an exact sequence

(3.25) 0 // E(µF )
ι

// E
β

// ∧2(E)
π∧π

// ∧2(F ∗) // 0,

where β is the map taking e to e ∧ 1.
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Proof. The only non-trivial part is to show that the kernel of β is E(µF ). First
note that if e ∧ 1 = 0 ∈ ∧2(E), e and 1 must be linearly dependent over Z (this
follows from Lemma 3.20). Hence, e must be in EµF

.
Let e ∈ EµF

. We may assume that e ∈ Eµp∞
for some prime p. Suppose the

characteristic of F is not 2. By Lemma 3.28, the restriction of β to Eµp∞
is zero if

p 6= 2, and by inspection, this also holds if p = 2. Hence, β(e) = 0. Now suppose
the characteristic of F is 2. In particular p must be odd. Pick integers k and l such
that pke = l ∈ Eµp∞

. By Lemma 3.28, e ∧ 1 = pke ∧ 1 = l ∧ 1 is zero in ∧2(E) if

and only if l is even. Hence, pke, and therefore also e, is 2–divisible. �

Corollary 3.30. Let E be primitive. There is an exact sequence

µ̃F
χ

// B̂E(F )
π

// B(F ) // 0,

where µ̃F = E(µF )/2Z. �

Note that µ̃F is independent of E up to isomorphism. If the characteristic of F
is not 2, µ̃F is the unique non-trivial Z/2Z–extension of µF , and in characteristic
2, µ̃F is just µF . The notation µ̃F thus agrees with that of Suslin [18].

4. The extended Bloch group of a field

We now show that if we impose some conditions on F , the extended Bloch

groups B̂E(F ) are naturally isomorphic, and we can glue them together to form an

extended Bloch group B̂(F ) depending only on F . This group admits a natural
action by the automorphism group of F .

Definition 4.1. A field F is called free if it satisfies the following two conditions:

(i) F ∗/µF is a free abelian group;
(ii) |µF | < ∞.

Free fields include number fields and finite fields, and freeness is preserved un-
der finite transcendental extensions. For a discussion of fields satisfying (i), see
e.g. May [9]. Throughout this section F denotes a free field.

Corollary 3.27 implies that primitive Z–extensions of F ∗ are in one-one corre-
spondence with primitive roots of unity. If x is a primitive root of unity, we let Ex

denote the corresponding primitive extension. The restriction of Ex to µF is free
of rank one with generator x̃ mapping to x ∈ F ∗. Since F ∗ is free modulo torsion,
any extension of F ∗ is uniquely determined by its restriction to µF . The following
result is a direct consequence of this discussion and Theorem 3.21.

Lemma 4.2. Let F ′ be any field (not necessarily free) and let σ : F → F ′ be an
embedding. Let E′ be a Z–extension of F ′∗ and let E be a primitive Z–extension

of F ∗. There exists a covering σ̂ : E → E′ of σ. The induced map σ̂∗ : B̂E(F ) →
B̂E′(F ′) depends only on σ and not on the choice of covering. �

Corollary 4.3. For any pair Ex, Ey of primitive Z–extensions of F ∗, there exists

a covering Ψxy : Ex → Ey of the identity on F . The induced map Ψxy∗ : B̂Ex
(F ) →

B̂Ey
(F ) is an isomorphism with inverse Ψyx∗.

Proof. Existence of Ψxy follows from Lemma 4.3, and since the coverings Ψxy ◦Ψyx

and Ψyx ◦Ψxy are equivalent to the identities on Ey and Ex, the result follows. �
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Corollary 4.4. Let τ be an automorphism of F . For each primitive root of unity
x ∈ F , there exists a unique covering τ̂x : Ex → Eτ(x) of τ . The induced maps

τ̂x∗ : B̂Ex
(F ) → B̂Eτ(x)

(F ) satisfy

(4.1) τ̂y∗ ◦Ψxy∗ = Ψτ(x)τ(y)∗ ◦ τ̂x∗.
Proof. Existence of τ̂x follows from Lemma 4.3, and since τ̂y ◦Ψxy and Ψτ(x)τ(y)◦ τ̂x
are both coverings of τ , the result follows. �

Definition 4.5. The extended Bloch group of F is defined by

(4.2) B̂(F ) = lim
←−

B̂Ex
(F ) =

{
(αEx

) ∈
∏

B̂Ex
(F )

∣∣ αEy
= Ψxy∗(αEx

)
}
,

where the product is over primitive roots of unity.

Remark 4.6. If F is not free, we can still define B̂(F ) as an inverse limit, but in the
general case, the primitive extensions do not form a directed set, and we do not see
how to establish the desired connection with the classical Bloch group.

Proposition 4.7. There is a natural action of Aut(F ) on B̂(F ), where each auto-
morphism acts by an isomorphism.

Proof. This follows directly from (4.1). �

Proposition 4.8. There is an exact sequence

µ̃F
χ

// B̂(F )
π

// B(F ) // 0.

Proof. This is an easy consequence of Corollary 3.30. �

Note that the action of Aut(F ) on µ̃F is through the quadratic character.

4.1. Embeddings in C and the regulator. Recall that B̂(C) is the extended
Bloch group associated to the extension of C∗ given by the exponential map.

Let σ be an embedding of F in C. By Lemma 4.3, each primitive extension Ex

admits a covering σ̂x : Ex → C of σ.

Lemma 4.9. The induced map σ̂x∗ : P̂Ex
(F ) → P̂(C) restricts to an injection

Ex/2Z → C/4πiZ.

Proof. Clearly, σ̂x : Ex → C is injective. Since σ̂x must take 1 to 2πik, where k is
relatively prime to |µF |, the result follows from Lemma 3.18. �

Corollary 4.10. Let F be a free field admitting an embedding in C. The map

χ : E/2Z → P̂E(F ) is injective for all primitive extensions E.

Proof. We may assume that E = Ex. It is enough to prove that σ̂x∗ ◦χ : Ex/2Z →
P̂(C) is injective. By Lemma 3.18, σ̂x∗ ◦ χ = χC ◦ σ̂x∗, where χC denotes the map

χ : C/4πiZ → P̂(C). By Corollary 4.10 (and Remark 3.15), this is a composition
of injective maps, hence injective. �

Since σ̂x and σ̂y ◦Ψxy both cover σ, the induced maps satisfy σ̂x∗ = σ̂y∗ ◦Ψxy∗,
and we obtain a map

(4.3) σ∗ : B̂(F ) → B̂(C)
depending only on σ. The following is a simple consequence of Lemma 4.9 and
Corollary 4.10.
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Proposition 4.11. Let F be a free field admitting an embedding σ in C. The map

σ∗ : B̂(F ) → B̂(C) restricts to an injection µ̃F → µC. Furthermore, the sequence

(4.4) 0 // µ̃F
χ

// B̂(F )
π

// B(F ) // 0.

is exact. �

4.1.1. The regulator. A number field F of type [r1, r2] has r1 real embeddings and
r2 pairs of complex embeddings. The regulator map (2.4) is equivariant with respect

to the action on B̂(C) by complex conjugation given by [z; p, q] 7→ [z̄;−p,−q]. We
therefore obtain a regulator

(4.5) B̂(F ) → (R/4π2Z)r1 ⊕ (C/4π2Z)r2 .

Example 4.12. Let x be a root of p(x) = x4 − x3 + 2x2 − 2x + 1, and consider
the number field F = Q(x). One can check that µF has order 6 and is generated
by w = x3 + x. Let E be the primitive extension corresponding to w and let w̃ be
the generator of EµF

. Let u = −x3 − 2x+ 1 and let v = x2 − x+ 1. The relations

1− u = u2w4, v = w3u−2, 1− v = u−3w,

are easily verified, and it follows that α = [u] + 2[v] ∈ B(F ). Let ũ be a lift of u,
and consider the lift

(4.6) α̃ = (ũ, 2ũ+ 4w̃) + 2(−2ũ+ 3w̃,−3ũ+ w̃)− 3χ(ũ) ∈ P̂E(F )

of α. One easily checks that ν̂(α̃) = 0, so α̃ is in B̂E(F ). One can check, e.g. using
Lemma 3.16, that α̃ is independent of the particular choice of ũ.

Let z be the root of p given by z = −0.1217 . . .+ i1.3066 . . ., and let σ denote the
corresponding embedding. Then σ(w) = exp(−πi/3). Let σ̂ : E → C be a covering
of σ. Letting log denote the principal branch of logarithm, we may assume that

σ̂(w̃) = −πi/3, σ̂(ũ) = log(σ(u)) = −0.2717 . . .− i0.6165 . . . .

Using Lemma 3.18, we see that σ̂∗ takes χ(ũ) to −χ(log(σ(u))). We now have

σ∗(α) = (−0.2717 . . .− i0.6165 . . . ,−0.5435 . . .− i5.4218 . . .)

+ 2(0.5435− i1.9085 . . . , 0.8153 . . .+ i0.8023 . . .)

+ 3χ(−0.2717 . . .− i0.6165 . . .).

Using (2.4) or (2.6), (and Remark 3.15), we obtain

R(σ∗(α)) = −7.4532 . . .− i2.3126 . . . ∈ C/4π2Z.

Remark 4.13. Examples like the above can be produced in abundance using com-
puter software like PARI/GP.

5. The other version of the extended Bloch group

As mentioned in the introduction there are two versions, B̂(C)SL and B̂(C)PSL, of
the extended Bloch group. They are isomorphic to H3(SL(2,C)) and H3(PSL(2,C)),

respectively. In this section we define the algebraic version of B̂(C)PSL, and dis-
cuss its relationship with hyperbolic geometry. We stress that this version is only
defined when the extension E of F is 2–primitive.
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Let F be a field and let E be a 2–primitive extension of F ∗ by Z. By Corol-
lary 3.26, 1 ∈ Z ⊂ E is uniquely two-divisible, so 1

2 ∈ E is well defined. Consider
the set of odd flattenings

(5.1) FE =
{
(e, f) ∈ E × E

∣∣ ±π(e)± π(f) = 1 ∈ F
}
,

Since knowledge of z and 1− z up to a sign determines z, we have a map π : FE →
F \ {0, 1}. Define FTE as in Definition 3.2, and define P̂E(F )PSL to be the abelian
group generated by FE subject to the relations

4∑

i=0

(−1)i(ei, fi) = 0 for
(
(e0, f0), . . . (e4, f4)

)
∈ FTE

(e +
1

2
, f +

1

2
) + (e, f) = (e+

1

2
, f) + (e, f +

1

2
).

The second relation is the analog of the transfer relation; see Goette–Zickert [5] or

Neumann [12, Proposition 7.2]. The extended Bloch group B̂E(F )PSL is defined as
in Definition 4.5. Note that π : FE → F \ {0, 1} induces maps from the extended

groups P̂E(F )PSL and B̂E(F )PSL to the classical ones.
For a ∈ E \ Z let χ(a) = (e, f + 1/2) − (e, f), where (e, f) is any flattening of

π(a). The analog of Lemma 3.6 holds, proving independence of f , and indepen-
dence of e follows from the transfer relation. As in Corollary 3.10, χ extends to

a homomorphism χ : E → P̂E(F )PSL, and a computation as in (3.10) shows that
χ(1) = 2χ(12 ) = 0.

Lemma 5.1. There is a commutative diagram of exact sequences.

(5.2)

E/2Z
χ

//

2

��

P̂E(F )

p

��

// P(F ) // 0

E/Z
χ

// P̂E(F )PSL
// P(F ) // 0,

Proof. Exactness of the bottom sequence is proved as in Theorem 3.13. For com-

mutativity of the left diagram, note that in P̂E(F )PSL, we have

(5.3) (e, f+1)−(e, f) = (e, f+1)−(e, f+
1

2
)+(e, f+

1

2
)−(e, f) = 2χ(e) = χ(2e).

This proves the result. �

It follows from Proposition 3.29 that we have an exact sequence

(5.4) µF
χ

// B̂E(F )PSL
// B(F ) // 0

If F is a free field, we can form B̂(F )PSL as in Section 4. An embedding F → C

induces a map B̂(F )PSL → B̂(C)PSL restricting to an injection µF → µC. In
particular, χ is injective, and it follows from Lemma 5.1 that there is an exact
sequence

(5.5) 0 // Z/4Z // B̂(F )
p

// B̂(F )PSL
// Z/2Z // 0.
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Remark 5.2. One can concretely determine if an element α ∈ B̂E(F )PSL lifts: Pick

any element τ ∈ P̂E(F ) lifting π(α) ∈ B(F ). Then x = α − pτ ∈ P̂E(F )PSL is in
E/Z = F ∗, and it follows from Lemma 5.1 that α lifts if and only if x is a square
in F ∗.

5.1. Parabolic representations. The result below generalizes the main result in
Zickert [21].

Theorem 5.3. Let M be a tame manifold, and let F be a free field. A parabolic

representation ρ : π1(M) → PSL(2, F ) defines a fundamental class [ρ] ∈ B̂(F )PSL.

If σ : F → C is an embedding, σ∗([ρ]) = [σ ◦ ρ] ∈ B̂(C)PSL.

Proof. In Zickert [21] we defined a homomorphism H3(PSL(2,C), P ) → B̂(C)PSL,
where P = {( 1 ∗0 1 )}. This map can be defined over any free field by replacing the
logarithms in Zickert [21, (3.6)] by a lift of E → F ∗. By Zickert [21, Theorem 5.13] a
decorated parabolic representation ρ : π1(M) → PSL(2, F ) of M has a fundamental
class H3(PSL(2, F ), P ), and as in Zickert [21, Theorem 6.10], the image of the

fundamental class in B̂(F )PSL is independent of the decoration. This proves the first
statement. The second statement is an immediate consequence of the definition. �

Remark 5.4. We stress that B̂(F )PSL is not isomorphic to H3(PSL(2, F )) in general.

6. Ideal cochains and flattenings of 3–cycles

Fix a field F and a primitive extension E of F ∗ by Z. By a simplex we will always
mean a standard simplex together with a fixed vertex ordering. Unless otherwise
specified, a simplex means a 3–simplex.

Definition 6.1. An (algebraic) flattening of a simplex ∆ is an association of an

algebraic flattening (e, f) ∈ F̂E to ∆. If (e, f) is a flattening of z ∈ F \ {0, 1}, we
refer to z as the cross-ratio of the flattened simplex.

Remark 6.2. Definition 6.1 is a generalization of even flattenings, i.e. flattenings
[z; p, q], with p and q even. Neumann [12] also allows odd values of p and q.

We will associate elements in E to edges of a flattened simplex as indicated in
Figure 1. We will refer to these elements as log-parameters.

Definition 6.3. An (ordered, oriented) 3–cycle is a space K obtained from a
collection of simplices by gluing together pairs of faces using simplicial attaching
maps preserving the vertex orderings. If all faces have been glued, we say that K
is closed. We assume that the manifold K0 with boundary (and corners) obtained
by removing disjoint regular neighborhoods of the 0–cells is oriented. If ∆i is a
simplex in K, we let εi be a sign encoding whether or not the orientation of ∆i

coming from the vertex ordering agrees with the orientation of K0.

Remark 6.4. Neumann [12] only considers closed 3–cycles. With our definition, a
single simplex is a 3–cycle.

The definition below is the analog of Neumann [12, Definition 4.4], which the
reader may consult for further details.

Definition 6.5. Let K be a closed 3–cycle. A flattening of K is a choice of flat-
tening of each simplex of K such that the total log-parameter (summed according
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to the sign conventions of Neumann [12, Definition 4.3]) around each edge is zero.
If the total log-parameter along any normal curve in the star of each zero-cell is
zero, it is called a strong flattening.

Remark 6.6. We do not need any conditions on the parity. This is because the
parity condition is automatically satisfied for even flattenings. The proof of this
fact is identical to the proof of Neumann [12, Proposition 5.3].

If K is a 3–cycle, and G is an abelian group, we let C1(K;G) denote the set
of cellular 1–cochains in K with values in G. A cochain c ∈ C1(K;G) naturally
associates to each edge of each simplex of K an element in G. Edges that are
identified in K acquire the same labeling. If ∆ is a simplex of K, we let cij(∆)
denote the labeling of the edge joining the vertices i and j in ∆, see Figure 2.

0

1

2

3

e e

−f

−f

−e+ f

−e+ f

Figure 1. Associat-

ing log-parameters to

edges of a flattened

simplex.

0

1

2

3

c01 c23

c03

c12

c02

c13

Figure 2. Edge

labelings arising

from a cochain.

Definition 6.7. Let K be a 3–cycle. A cochain c ∈ C1(K;F ∗) is called an ideal
cochain if for each simplex ∆i in K, there is an element zi ∈ F ∗ \ {0, 1}, such that
the associated labeling of edges satisfies

(6.1)
ci03c

i
12

ci02c
i
13

= zi,
ci01c

i
23

ci02c
i
13

= 1− zi.

An ideal cochain thus associates cross-ratios to each simplex.

Remark 6.8. Not all 3–cycles admit ideal cochains. The fact that 3–cycles admitting
ideal cochains exist follows from Remark 6.16 below.

We wish to prove that each lift c̃ ∈ C1(K;E) of an ideal cochain c determines

an element in σ̂(c̃) ∈ P̂E(F ) such that if K is closed, σ̂(c̃) is in B̂E(F ) and is
independent of the choice of lift. In other words, an ideal cochain on a closed

3–cycle determines an element in B̂E(F ).
Let In be the free abelian group on cochains c̃ ∈ C1(∆n;E) on an n–simplex

∆n, whose restriction to each 3–dimensional face is the lift of an ideal cochain. The
usual boundary map induces boundary maps ∂ : In → In−1, making I∗ into a chain
complex. A lift c̃ of an ideal cochain c on K determines an element in I3 given by∑

εic̃
i. We may thus regard lifts of ideal cochains as elements in I3. Note that if

K is closed, c̃ is a cycle, i.e. ∂c̃ = 0 ∈ I2.
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Consider the maps σ̂ : I3 → Z[F̂E ] and µ : I2 → ∧2(E) defined on generators by

σ̂(c̃) = (c̃03 + c̃12 − c̃02 − c̃13, c̃01 + c̃23 − c̃02 − c̃13),(6.2)

µ(c̃) = −c̃01 ∧ c̃02 + c̃01 ∧ c̃12 − c̃02 ∧ c̃12 + c̃02 ∧ c̃02.(6.3)

Lemma 6.9. There is a commutative diagram

(6.4)

I4
∂

//

σ̂

��

I3
∂

//

σ̂

��

I2

µ

��

Z[F̂TE ]
ρ̂

// Z[F̂E ]
ν̂

// ∧2(E).

Proof. Let c̃ ∈ I4 be a generator, and suppose σ̂ ◦ ∂(c̃) =
∑

(−1)i(ei, fi). We must
prove that the flattenings (ei, fi) satisfy the five equations of Definition 3.2. We
check the first equation, and leave the verification of the four others to the reader.
By (6.2) we have

e0 = c̃14 + c̃23 − c̃13 − c̃24

e1 = c̃04 + c̃23 − c̃03 − c̃24

e2 = c̃04 + c̃13 − c̃14 − c̃03,

and it follows that e2 = e1 − e0.
Letting c̃ ∈ I3 be a generator, we see that ν̂ ◦ σ̂(c̃) and µ◦∂(c̃) are both a sum of

12 terms of the form c̃ij ∧ c̃kl with {i, j} 6= {k, l} and 4 two-torsion terms summing
to c̃02∧ c̃02+ c̃13∧ c̃13 (the two other terms cancel out). The two-torsion terms thus
match up, and one easily checks that the other terms match up as well, proving
commutativity of the right square. �

Corollary 6.10. If K is closed and c̃ is a lift of an ideal cochain on K, σ̂(c̃) is in

B̂E(F ). �

Proposition 6.11. Let K be a closed 3–cycle. The set of flattenings coming from
a lift of an ideal cochain is a strong flattening of K.

Proof. The proof is identical to the proof of Zickert [21, Theorem 6.5], so we omit
some details. Consider a curve α in the star of a 0–cell as shown in Figure 3. When
α passes through a simplex, it picks up a log-parameter, which is a signed sum
of four terms. The signs are shown in the figure. If α is a closed curve, it is not
difficult to see that all terms must cancel out. �

α+
−

+ −

+ −

+
−

+
−

− + −+
− +

− +
− +

Figure 3. A normal curve in the star of a 0–cell. Each edge and each

vertex corresponds to a 1–cell in K.
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Lemma 6.12. Let K be a 3–cycle and let c be an ideal cochain on K. Let e be
an interior 1–cell of K, and let αe ∈ C1(K;Z) be the cochain taking e to 1 and all
other 1–cells to 0. For every lift c̃ of c, we have

(6.5) σ̂(c̃+ αe) = σ̂(c̃) ∈ P̂E(F ).

Proof. The map σ̂ associates flattenings to the simplices of K, and using (6.2) one
checks that the flattenings coming from c̃ and c̃ + α differ by Neumann’s cycle
relation [12, Section 6] about e (or rather the obvious generalization of this relation
to algebraic flattenings). Neumann’s proof that the cycle relation is a consequence
of the lifted five term relation carries over to the algebraic setup word by word. �

Corollary 6.13. If K is a closed 3–cycle, σ̂(c̃) = σ̂(c̃ + α) ∈ B̂E(F ) for any
α ∈ C1(K;Z). Hence, an ideal cochain c on K determines an element in σ̂(c) ∈
B̂E(F ). �

6.1. The action of Z1(K;Z/2Z) on ideal cochains. Let K be a closed 3–cycle,
and suppose that the characteristic of F is not 2. The group Z1(K;Z/2Z) of cellular
1–cocycles on K acts on the set of ideal cochains by multiplication. Note that the
action does not change the cross-ratios. A cochain α ∈ Z1(K;Z/2Z) determines a
map

Bα : K → B(Z/2Z) = RP∞,

and we wish to prove that the elements in B̂E(F ) associated to ideal cochains c and
αc differ by a two-torsion element which is zero if and only if Bα∗([K]) is zero in
H3(RP

∞) = Z/2Z.
The homology of a group G is the homology of the complex B∗(G) where Bn(G)

is generated by symbols 〈g1| . . . |gn〉 with gi ∈ G. Such tuples are in one-one corre-
spondence with G–cocycles on ∆n; a cocycle is uniquely given by its values on the
edges between vertices i and i+1. Under this correspondence, the boundary maps
are induced by the standard ones. Given a cocycle α ∈ Z1(K;G) the restriction of
α to ∆i determines a tuple 〈gi1|gi2|gi3〉 and by Zickert [21, Proposition 5.7] we have

Bα∗([K]) =
∑

εi〈gi1|gi2|gi3〉.

Let α ∈ Z1(∆3;Z/2Z) and let c ∈ C1(∆3;F ∗) be an ideal cochain. Let c′ = αc,
and pick a lift c̃ of c. Then c̃ endows ∆3 with a flattening σ̂(c̃) given by

(e, f) = (c̃03 + c̃12 − c̃02 − c̃13, c̃01 + c̃23 − c̃02 − c̃13).

Let w ∈ E be the sum of the log-parameters at the edges where αij = −1. One
easily checks that w is always (uniquely) two-divisible, e.g. if α = 〈−1|1| − 1〉,
w = 2e+ 2(−e+ f) = 2f . Let c̃′ be the lift of c′ defined by

(6.6) c̃′ij = c̃ij +

{
1
2 if αij = −1

0 otherwise.

Lemma 6.14. Let δ ∈ Z ⊂ E be 1 if α = 〈−1| − 1| − 1〉 and 0 otherwise. We have

(6.7) σ̂(c̃′)− σ̂(c̃) = χ(
1

2
w) + χ(δ) ∈ P̂E(F ).

Proof. This is done case by case using Lemma 3.16. If e.g. α = 〈1|− 1|1〉, w = −2e
and we have

σ̂(c̃′)− σ̂(c̃) = (e, f − 1)− (e, f) = χ(−e) = χ(
1

2
w) + χ(δ).
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The other seven cases are similar and left to the reader. �

Theorem 6.15. Let α ∈ Z1(K;Z/2Z). For any ideal cochain c, σ̂(αc) − σ̂(c) is

two-torsion in B̂E(F ), which is trivial if and only if Bα∗([K]) ∈ H3(RP
∞) = Z/2Z

is trivial.

Proof. Let c̃ be a lift of c and let c̃′ be the lift of αc defined by (6.6). For each
simplex ∆i of K, we have elements wi and δi as above. Since the flattening of K
defined by c̃ is strong,

∑
εiwi = 0 ∈ E, and since E has no two-torsion, Lemma 6.14

implies that

σ̂(c̃′)− σ̂(c̃) =
∑

εiχ(δi).

One easily checks that the isomorphism H3(BZ/2Z) ∼= Z/2Z is induced by the map
B3(Z/2Z) → Z/2Z taking 〈−1| − 1| − 1〉 to 1 and all other generators to 0. This
proves the result. �

6.2. Ideal cochains and homology of linear groups. In this section we define

a canonical map λ̂ : H3(SL(2, F )) → B̂E(F ). This is purely algebraic and follows
Dupont–Zickert [2]. We assume that F is infinite.

Let C∗(F
2) be the chain complex generated in dimension n by (n + 1)–tuples

of vectors in F 2 \ {0} in general position, together with the usual boundary map.
Letting p : F 2 \ {0} → P 1(F ) be the canonical projection, a simple computation
(as in Dupont–Zickert [2, Section 3.1]) shows that

(6.8) z =
det(v0, v3) det(v1, v2)

det(v0, v2) det(v1, v3)
, 1− z =

det(v0, v1) det(v2, v3)

det(v0, v2) det(v1, v3)
,

where z is the cross-ratio of the tuple (p(v0), p(v1), p(v2), p(v3)). It follows that
there is a chain map

(6.9) Γ: C∗(F
2) → I∗, Γ(v0, . . . , vn)ij = log det(vi, vj).

Here log denotes a fixed section of π : E → F ∗. We refer to it as a logarithm. Let

λ̂ = σ̂ ◦ Γ. Then λ̂ is SL(2, F )–invariant, and by Lemma 6.9 it induces a map

H3(C∗(F
2)SL(2,F )) → B̂E(F ).

Recall that the homology of a group G is the homology of (F∗)G = F∗ ⊗Z[G]

Z, where F∗ is any free resolution of Z by G-modules. One such resolution is
the complex C∗(G) of tuples in G. Note that C∗(G)G equals the complex B∗(G)
considered in Section 6.1. If G = SL(2, F ) we may assume (see e.g. Dupont–
Zickert [2, Section 3.2]) that all tuples (g0, . . . gn) are in general position in the
sense that (g0v, . . . , gnv) ∈ Cn(F

2) for some fixed v 6= 0 ∈ F 2 (the particular choice
is inessential). It follows that λ canonically extends to a map

(6.10) λ̂ : H3(SL(2, F )) → B̂E(F ), (g0, g1, g2, g3) 7→ σ̂ ◦ Γ(g0v, g1v, g2v, g3v).

Remark 6.16. Note that for each α ∈ H3(SL(2, F )), λ̂(α) is induced by an ideal

cochain on a 3–cycle. The fact that λ̂ is independent of the choice of logarithm
follows from Corollary 6.13.

Remark 6.17. The map π◦ λ̂ : C3(F
2) → P(F ) is GL(2, F )–invariant, and it follows

that there is an induced map H3(GL(2, F )) → B(F ). This map factors through
H3(C∗(P

1(F ))GL(2,F )), and thus agrees with that of Suslin [18].
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7. The extended Bloch group and algebraic K–theory

In this section, we prove our main result Theorem 1.1. We do this in three steps.

The first and most difficult step is to extend the map λ̂ from Section 6.2 to a map

λ̂ : H3(GL(3, F )) → B̂E(F ). Once this has been done, we obtain a map

(7.1) K3(F )
H

// H3(GL(F ))
∼=

// H3(GL(3, F ))
λ̂

// B̂E(F ) ,

where H is the Hurewicz map and the middle isomorphism is Suslin’s stability
result Theorem 2.7. In the first step, we only require that F be infinite and that E
be primitive. The second step is to prove that this map takes the image of KM

3 (F )
to 0. To do this, we need to assume that F is a number field, or more generally,

a free field. The third and final step is to show that λ̂ induces a map between the
diagrams (1.1) and (4.4). The result then follows from the five-lemma.

7.1. Step one: Extension of λ̂ to H3(GL(3, F )). We start by constructing λ̂
on H3(SL(2, F )). We assume that F is infinite and that E is primitive. Much
of the construction draws inspiration from Igusa [7], Fock–Goncharov [3], and pri-
vate discussions with Dylan Thurston and Stavros Garoufalidis. In Garoufalidis–
Thurston–Zickert [4] we generalize to SL(n, F ) and discuss some of the underlying
geometric ideas motivating the construction.

In Section 6.2 we associated an ideal cochain to a quadruple of vectors in F 2.
We now generalize this to tuples of vectors in F 3. Let v = (v0, . . . , vn) be a tuple
of vectors in F 3 in general position, and let w ∈ F 3 be in general position with
respect to the vi’s. For each i ∈ {0, . . . , n+ 1} we have a cochain c̃iw ∈ C1(∆n;E)
given by

(7.2) c̃iw(v)jk =





log det(w, vj , vk) if i ≤ j < k

log det(vj , w, vk) if j < i ≤ k

log det(vj , vk, w) if j < k < i,

where, as in Section 6.2, log is a fixed section of π : E → F ∗.

Lemma 7.1. Each c̃iw(v) is in In, and for each restriction to a 3–dimensional face
of ∆n, the cross-ratio is independent of i.

Proof. We may assume that v = (v0, v1, v2, v3). Let ciw(v) be the projection of
c̃iw(v) to C1(∆3;F ∗), and let p : F 3 \{w} → P (F 3/〈w〉) denote the map induced by
projection. By applying a linear transformation if necessary, we may assume that
w = (1, 0, 0), and identify F 3/〈w〉 with F 2. It now follows from (6.8) that the cross-
ratio z of the tuple (p(v0), p(v1), p(v2), p(v3)) of elements in P (F 3/〈w〉) ≈ P 1(F )
satisfies

z =
det(w, v0, v3) det(w, v1, v2)

det(w, v0, v2) det(w, v1, v3)
, 1− z =

det(w, v0, v1) det(w, v2, v3)

det(w, v0, v2) det(w, v1, v3)
.

It follows that c0w(v) is an ideal cochain with cross-ratio z. Since the expressions

ciw(v)03c
i
w(v)12

ciw(v)02c
i
w(v)13

,
ciw(v)01c

i
w(v)23

ciw(v)02c
i
w(v)13

are independent of i, it follows that the same is true for all the ciw(v)’s. �
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If v = (v0, v1, v2, v3), we let (v0, v1, v2, v3)
i
w denote the flattening σ̂(c̃iw(v)). The

log-parameters are given by

(7.3)
e = c̃iw(v)03 + c̃iw(v)12 − c̃iw(v)02 − c̃iw(v)13

f = c̃iw(v)01 + c̃iw(v)23 − c̃iw(v)02 − c̃iw(v)13.

Lemma 7.2. The following formulas hold in P̂E(F ) (note the superscripts).

(v1, v2, v3, v4)
0

w−(v0, v2, v3, v4)
0

w+(v0, v1, v3, v4)
0

w−(v0, v1, v2, v4)
0

w+(v0, v1, v2, v3)
0

w=0

(v1, v2, v3, v4)
0

w−(v0, v2, v3, v4)
1

w+(v0, v1, v3, v4)
1

w−(v0, v1, v2, v4)
1

w+(v0, v1, v2, v3)
1

w=0

(v1, v2, v3, v4)
1

w−(v0, v2, v3, v4)
1

w+(v0, v1, v3, v4)
2

w−(v0, v1, v2, v4)
2

w+(v0, v1, v2, v3)
2

w=0

(v1, v2, v3, v4)
2

w−(v0, v2, v3, v4)
2

w+(v0, v1, v3, v4)
2

w−(v0, v1, v2, v4)
3

w+(v0, v1, v2, v3)
3

w=0

(v1, v2, v3, v4)
3

w−(v0, v2, v3, v4)
3

w+(v0, v1, v3, v4)
3

w−(v0, v1, v2, v4)
3

w+(v0, v1, v2, v3)
4

w=0.

We will refer to the left hand sides of the five equations above as boundaries, and
denote them by ∂i(v0, v1, v2, v3, v4)w, i ∈ {0, . . . , 4}.

Proof. We will show that each of the boundaries corresponds to a lifted five term
relation. To do this we must prove that the flattenings satisfy the five equations
of Definition 3.2. Suppose we wish to verify that f3 = f2 − f1 for the boundary
∂2. The relevant terms involved in this are (v0, v1, v2, v4)

2
w, (v0, v1, v3, v4)

2
w and

(v0, v2, v3, v4)
1
w. If we denote their flattenings by (e3, f3), (e2, f2) and (e1, f1), it

follows from (7.3) and (7.2) that

f3 = log(v0, v1, w) + log(w, v2, v4)− log(v0, w, v2)− log(v1, w, v4)

f2 = log(v0, v1, w) + log(w, v3, v4)− log(v0, w, v3)− log(v1, w, v4)

f1 = log(v0, w, v2) + log(w, v3, v4)− log(v0, w, v3)− log(w, v2, v4),

where log(u, v, w) denotes log(det(u, v, w)). Hence, f3 = f2 − f1 as desired. The
verification of the other formulas are similar and are thus left to the reader. �

Lemma 7.3. We have

(7.4) (v1, v2, v3, v4)
0
v0 − (v0, v2, v3, v4)

1
v1 + (v0, v1, v3, v4)

2
v2

− (v0, v1, v2, v4)
3
v3 + (v0, v1, v2, v3)

4
v4 = 0 ∈ P̂E(F ).

We will denote the left hand side by ∂(v0, v1, v2, v3, v4).

Proof. As in the proof of Lemma 7.2, we can verify that the flattenings satisfy the
five equations in Definition 3.2. We leave this to the reader. �

If F is an ordered basis of F k, we let Fi denote the ith basis vector. A set
S of ordered bases is in general position if any set of k basis vectors from S is
linearly independent. Let CF∗ be the chain complex generated in dimension n
by tuples (F0, . . . ,Fn) of ordered bases of F 3 in general position, together with
the usual boundary map. Left multiplication makes CF∗ into a chain complex of
free GL(3, F )–modules. Since F is assumed to be infinite, it is easy to see that
CF∗ is acyclic. Hence, the complexes (CF∗)SL(3,F ) and (CF∗)GL(3,F ) compute the
homology groups H∗(SL(3, F )) and H∗(GL(3, F )), respectively.
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Consider the SL(3, F )–invariant map λ̂ : CF3 → P̂E(F ) given by sending a gen-
erator (F0,F1,F2,F3) to

(7.5) (F02,F11,F21,F31)
0
F01 + (F01,F12,F21,F31)

1
F11

+ (F01,F11,F22,F31)
2
F21 + (F01,F11,F21,F32)

3
F31 .

We will often abbreviate the notation by omitting the F, and writing a subscript
Fi1 as i, e.g. we abbreviate (F02,F11,F21,F31)

0
F01

to (02, 11, 21, 31)
0
0.

To help the reader visualize the arguments that follow, we give a geometric way

of viewing the map λ̂: A generator of CF3 can be thought of as a simplex ∆ together
with an association of an ordered basis Fi to each vertex. We may think of each of
the four terms in (7.5) as a standard simplex endowed with an ideal cochain. We
mark ∆ with two points on each edge and a point on each face as shown in Figure 4.
We will refer to these points as edge points and face points respectively. Each point
is given uniquely by a tuple β = (x0, x1, x2, x3) with x0 + x1 + x2 + x3 = 3, where
the coordinate xi measures the “distance” to the face opposite vertex i. For each
such β, let βi be the ordered set {Fi1, . . . ,Fixi

} and let Sβ = β0 ∪ β1 ∪ β2 ∪ β3.
Note that Sβ always has exactly 3 elements. Hence, det(Sβ) is well defined and
gives a labeling of each marked point of ∆. As an example, the edge point, closest
to vertex 1, between vertices 1 and 2 is labeled by det(F11,F12,F21).

We can think of ∆ as a union of four simplices ∆i, where ∆i is the simplex
spanned by the ith vertex of ∆ and the marked points with xi 6= 0. We think
of the ∆i’s as being disjoint. The labelings of the marked points in ∆ gives rise
to cochains on ∆i, and using (7.2), one can check that these are exactly the ideal
cochains of the terms in (7.5).

F0

F1

F2

F3

0

1

2

3

c101 c123

c103

c112

c102

c113

0

1

2

3

c001 c023

c003

c012

c002

c013

0

1

2

3

c301 c323

c303

c312

c302

c313

0

1

2

3

c201 c223

c203

c212

c202

c213

Figure 4. The ideal cochains on the simplices ∆i arising from a labeling

of marked points in ∆. The dashed lines mark the bottom of ∆1.

Remark 7.4. An ordered basis determines an affine flag, and one easily checks that

λ̂ only depends on the underlying affine flags.

If τ ∈ (CF3)SL(3,F ) is a cycle, we can represent τ by a 3–cycle K together with
a labeling of the marked points in each of the simplices of K. Identified points

acquire the same labeling. From the geometric description of the map λ̂, it follows

that we can represent λ̂(τ) by a 3–cycle C with boundary together with an ideal
cochain on C. Note that C is homeomorphic to the disjoint union of the cones on
the links of the 0–cells of K.
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Lemma 7.5. The restriction of λ̂ to cycles in (CF3)SL(3,F ) is independent of the
choice of logarithm. In fact, we may choose different logarithms for each of the
marked points as long as we use the same logarithm for identified points.

Proof. For edge points this follows from Lemma 6.12. A face point occurs in exactly
3 of the simplices ∆i. Consider the face point opposite vertex 0, and suppose
the flattenings of ∆1, ∆2 and ∆3 are (e, f), (e′, f ′) and (e′′, f ′′). If we add 1 to
the logarithm of the face point, it follows from (7.3) that the flattenings become
(e, f +1), (e′−1, f ′−1) and (e′′+1, f ′′). By Lemma 3.16, this changes the element

in P̂E(F ) by χ(e− e′+ f ′− f ′′+1). Keep in mind that χ(1) = −χ(1). Using (7.3),
we have

(7.6)

e− e′ + f ′ − f ′′ = (01, 11, 31) + (11, 12, 21)− (01, 11, 21)− (11, 12, 31)

−
(
(01, 21, 31) + (11, 21, 22)− (01, 21, 22)− (11, 21, 31)

)

+ (01, 11, 21) + (21, 31, 32)− (01, 21, 22)− (11, 21, 31)

−
(
(01, 11, 31) + (21, 31, 32)− (01, 21, 31)− (11.31, 32)

)

=
(
(11, 12, 21)− (11, 21, 22)

)
+
(
(11, 31, 32)− (11, 12, 31)

)

+
(
(21, 22, 31)− (21, 31, 32)

)
,

where (ij, kl,mn) denotes log det(Fij ,Fkl,Fmn). Note that each term is a logarithm
of one of the six edge points on the face opposite vertex 0. By a similar calculation

one can check that this holds in general, i.e. the change in the P̂E(F ) element when
adding 1 to the logarithm of a face point, is a signed sum of logarithms of the edge
points on that face (plus χ(1)). The signs are shown in Figure 5.

1

3 2−

−

−+

+

+

3

0 2−

−

−+

+

+

1

0 3−

−

−+

+

+

1

2 0−

−

−+

+

+

Figure 5. Change in the P̂E(F ) element when adding 1 to the loga-

rithm of a face point. There is a contribution for each edge point on the

given face.

In a cycle, each face point lies in exactly two simplices, and since the face pairings
preserve orderings, it follows from Figure 5 that the changes in the element in

P̂E(F ), resulting from adding 1 to the logarithm, appear with opposite signs. �

Lemma 7.6. λ̂ takes boundaries in CF3 to 0 ∈ P̂E(F ).

Proof. Using (7.5), we see that λ̂(∂(F0, . . . ,F4)) ∈ P̂E(F ) equals

+ (12, 21, 31, 41)
0

1 − (02, 21, 31, 41)
0

0 + (02, 11, 31, 41)
0

0 − (02, 11, 21, 41)
0

0 + (02, 11, 21, 31)
0

0

+ (11, 22, 31, 41)
1

2 − (01, 22, 31, 41)
1

2 + (01, 12, 31, 41)
1

1 − (01, 12, 21, 41)
1

1 + (01, 12, 21, 31)
1

1

+ (11, 21, 32, 41)
2

3 − (01, 21, 32, 41)
2

3 + (01, 11, 32, 41)
2

3 − (01, 11, 22, 41)
2

2 + (01, 11, 22, 31)
2

2

+ (11, 21, 31, 42)
3

4 − (01, 21, 31, 42)
3

4 + (01, 11, 31, 42)
3

4 − (01, 11, 21, 42)
3

4 + (01, 11, 21, 32)
3

3.
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Using Lemma 7.2, this simplifies to

− (11, 21, 31, 41)
0
0 + (01, 21, 31, 41)

1
1 − (01, 11, 31, 41)

2
2

+ (01, 11, 21, 41)
3
3 − (01, 11, 21, 31)

4
4,

which by Lemma 7.3 is 0 ∈ P̂E(F ). �

We thus obtain an induced map λ̂ : H3(SL(3, F )) → P̂E(F ).

Lemma 7.7. The image of λ̂ is in B̂E(F ).

Proof. Consider the sequence of maps Jn : CFn → In given by

(7.7) (F0, . . . ,Fn) 7→
n∑

i=0

(F01, . . . ,Fi2, . . . ,Fn1)
i
Fi1 .

Note that J is not a chain map. By definition, λ̂ : CF3 → P̂E(F ) is equal to σ̂ ◦ J3,
where σ̂ : I3 → P̂E(F ) is the map given by (6.2). Consider the diagram

(7.8)

CF3
J3

//

∂

��

I3
σ̂

//

∂

��

P̂E(F )

ν̂

��

CF2
J2

// I2
µ

// ∧2(E).

By Lemma 6.9 the right square is commutative. Using the usual notational abbre-
viations, i.e. omitting the F, and shortening subscripts to i, a direct computation
shows that

(7.9) δ := (∂J3 − J2∂)(F0,F1,F2,F3) =

(11, 21, 31)
0
0 − (01, 21, 31)

1
1 + (01, 11, 31)

2
2 − (01, 11, 21)

3
3.

One easily checks that µ takes δ to 0 ∈ ∧2(E), and the result follows. �

Lemma 7.8. The restriction of λ̂ to H3(SL(2, F )) agrees with the map from the
previous section.

Proof. We consider F 2 as a subspace of F 3 using the inclusion (x, y) 7→ (0, x, y).
Let p : F 3 → F 2 be the natural projection, and let D∗ be the subcomplex of CF∗
consisting of tuples (F0, . . . ,Fn) such that (pF01, . . . , pFn1) ∈ Cn(F

2). Note that
D∗ is an acyclic SL(2, F )–complex, where SL(2, F ) is regarded as a subgroup of
SL(3, F ) in the natural way. Consider the GL(2, F )–equivariant map

(7.10) Ψ: D∗ → C∗(F
2), (F0, . . . ,Fn) 7→ (pF01, . . . , pFn1).

Let τ̂ denote the map C3(F
2) → P̂E(F ) from Section 6.2. We wish to prove that

τ̂◦Ψ and λ̂ differ by a coboundary. Note that (01, 11, 21, 31)
0
w = τ̂◦Ψ(F0,F1,F2,F3).

By definition, λ̂ takes (F0,F1,F2,F3) ∈ D3 to

(02, 11, 21, 31)
0
0 + (01, 12, 21, 31)

1
1 + (01, 11, 22, 31)

2
2 + (01, 11, 21, 32)

3
3.

We may subtract boundaries without effecting the image in P̂E(F ), and after sub-
tracting

∂1(w, 02, 11, 21, 31)0 + ∂2(w, 01, 12, 21, 31)1

+ ∂3(w, 01, 11, 22, 31)2 + ∂4(w, 01, 11, 21, 32)3,
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the remaining terms become

(w, 11, 21, 31)
1
0 − (w, 02, 21, 31)

1
0 + (w, 02, 11, 31)

1
0 − (w, 02, 11, 21)

1
1

(w, 12, 21, 31)
1
1 − (w, 01, 21, 31)

2
1 + (w, 01, 12, 31)

2
1 − (w, 01, 12, 21)

2
1

(w, 11, 22, 31)
2
2 − (w, 01, 22, 31)

2
2 + (w, 01, 11, 31)

3
2 − (w, 01, 11, 22)

3
2

(w, 11, 21, 32)
3
3 − (w, 01, 11, 32)

3
3 + (w, 01, 11, 32)

3
3 − (w, 01, 11, 21)

4
3.

By Lemma 7.3 the diagonal terms sum to (01, 11, 21, 31)
0
w = τ̂ ◦Ψ(F0,F1,F2,F3).

If we define φ : D2 → P̂E(F ) by

φ(F0,F1,F2) = (w, 02, 11, 21)
1
0 + (w, 01, 12, 21)

2
1 + (w, 01, 11, 22)

3
2,

the remaing terms are easily seen to equal φ ◦ ∂(F0,F1,F2,F3). Hence, τ̂ ◦ Ψ and

λ̂ differ by a coboundary as desired. �

Remark 7.9. As in Remark 6.17, the map π◦ λ̂ : CF3 → P(F ) is GL(3, F ) invariant,
and induces a map H3(GL(3, F )) → B(F ), which factors through the homology of
the complex PCF∗ of projective bases of F 3. The proof of Lemma 7.8 shows that
the map H3(GL(3, F )) → B(F ) agrees with the map in Remark 6.17, and that the

map H3(GL(2, F )) → B(F ) lifts to B̂E(F ) via H3(SL(3, F )) and the stabilization
map GL(2, F ) → SL(3, F ).

7.1.1. Extension to H3(GL(n, F )). In Garoufalidis–Thurston–Zickert [4] we con-

struct maps H3(SL(n, F )) → B̂E(F ) commuting with the stabilization maps. These

maps are induced by an SL(n, F )–invariant map λ̂ : CFn
3 → P̂E(F ), where CFn

∗ is
the complex of ordered bases of Fn (or affine flags, c.f. Remark 7.4). Remark 7.9
generalizes, i.e. the maps

(7.11) H3(GL(n, F )) → H3(SL(n+ 1, F )) → B̂E(F )

commute with stabilization. Hence, by (7.1), we obtain a map K3(F ) → B̂E(F ).

If F is free (and infinite), λ̂ commutes with the maps Ψxy from Proposition 4.3, so

λ̂ induces a map K3(F ) → B̂(F ). The map λ̂ commutes with Galois actions, and
respects the maps induced by embeddings in C. This implies that the regulators
(1.2) and (4.5) agree.

7.2. Step two: KM
3 (F ) maps to zero. From now on, we assume that F is a free

field admitting an embedding in C. This is used in Proposition 7.11 but not in
Lemma 7.10.

Lemma 7.10. The composition

H3(GL(3, F ))
λ̂

// B̂E(F )
π

// B(F )

agrees with the map constructed by Suslin [18, Section 3].

Proof. By a result of Suslin [17], H3(GL(3, F )) is generated by H3(GL(2, F )) and
H3(T ). By Remark 6.17 the two maps on H3(GL(2, F )). By Remark 7.9 the map

π ◦ λ̂ factors through the complex PCF∗ of projective bases. Since T acts trivially
on projective bases, PCF0 → Z has a T –equivariant section, and it follows that

π ◦ λ̂ is 0 on H3(T ). By Suslin [18, Proposition 3.1], this also holds for Suslin’s
map. Hence, the two maps agree. �
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Proposition 7.11. The composition KM
3 (F ) → K3(F ) → B̂(F ) is 0.

Proof. Let σ : F → C be an embedding and let σ∗ : B̂(F ) → B̂(C) be the induced

map. By Lemma 7.10, the image of KM
3 (F ) in B̂(F ) is in µ̃F . By Proposition 4.11,

σ∗ maps µ̃F injectively to µC, and since the regulator R is injective on µC, it is
enough to prove that the composition

KM
3 (F ) // µ̃F

// µC
R

// C/4π2Z

is zero. Since this factors through KM
3 (C), the result follows from Theorem 2.8 and

Theorem 2.9. �

7.3. Step three: A five lemma argument.

Lemma 7.12. The exact sequences (1.1) and (4.4) fit together in a diagram

0 // µ̃F
// K ind

3 (F ) //

λ̂
��

B(F ) // 0

0 // µ̃F
// B̂(F ) // B(F ) // 0.

Proof. Commutativity of the right square follows from Lemma 7.10. To prove
commutativity of the left square, we proceed as in the proof of Lemma 7.11. Since
σ∗ is injective on µ̃F , it is enough to prove the corresponding result with F replaced
by C. The result now follows from Theorem 2.8 and Theorem 2.9. �

The theorem below summarizes our results.

Theorem 7.13. Let F be a free field admitting an embedding in C. There is a
natural isomorphism

λ̂ : K ind
3 (F ) ∼= B̂(F )

commuting with Galois actions. �

If F ⊂ E is a field extension, the natural map K ind
3 (F ) → K ind

3 (E) is an inclu-
sion. Furthermore, if F ⊂ E is Galois, we have K ind

3 (E)Gal(E,F ) = K ind
3 (F ). This

property is called Galois descent. We refer to Merkurjev–Suslin [10] for proofs.

Corollary 7.14. For any free subfield F of C, the map B̂(F ) → B̂(C) induced by
inclusion is injective. �

Corollary 7.15. The extended Bloch group of a number field satisfies Galois de-
scent. �

8. Torsion in the extended Bloch group

In this section we give a concrete description of the torsion in B̂(F ). We start
by reviewing some elementary properties of homology of cyclic groups.

Proposition 8.1. Let G be a cyclic group of order n generated by an element
g ∈ G. The homology group H3(G) is cyclic of order n and is generated by the
cycle

n∑

k=1

〈g|gk|g〉.

We may thus identify G with H3(G). �
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We refer to Parry–Sah [15, Proposition 3.25] for an algebraic proof, and to Neu-
mann [12] for a geometric proof using the lens space L(n, 1).

Let p be a prime number. As explained in the introduction, K ind
3 (F )p has order

pνp for p odd and 2pνp for p = 2, where νp = max{ν | ξpν + ξ−1pν ∈ F}. To construct

the torsion in B̂(F ), it is thus enough to exhibit elements in B̂(F )p of order pνp for
p odd and 2pνp for p = 2.

Let n = pνp , and let x be a primitive nth root of unity. Consider the matrices

(8.1) g =

(
x+ x−1 −1

1 0

)
, µ =

(
x 0
0 x−1

)
, X =

(
x 1
1 x

)
.

Note that g ∈ SL(2, F ) and that g = XµX−1. Hence, g generates a cyclic subgroup
of SL(2, F ) of order n. Let [g] ∈ H3(SL(2, F )) denote the homology class of the
cycle

∑n
k=1〈g|gk|g〉.

Lemma 8.2. The element λ̂([g]) ∈ B̂(F ) has order n = pνp .

Proof. It follows from Proposition 8.1 that λ̂([g]) has order at most n. If we fix an
embedding of F (x) in C, we can view g and µ as elements in SL(2,C). Since g and

µ are conjugate in SL(2,C), it follows from Theorem 2.10 that λ̂([g]) has order at

least n. Hence, λ̂([g]) has order n. �

Corollary 8.3. For p odd, B̂(F )p is generated by λ̂([g]). �

8.1. Explicit computations. We now give an explicit expression for λ̂([g]). As-
sume for now that p is odd.

For any h1 and h2 in SL(2, F ), there is a homogeneous representative of [g] of
the form

(8.2)

n∑

i=1

(h1, gh1, g
kh2, g

k+1h2),

see e.g. the example in Neumann [12, Section 12]. Using (6.10), we see that λ̂ takes
a term (h1, gh1, g

kh2, g
k+1h2) to a flattening (ek, fk), with

(8.3)
ek = log(det(v1, g

k+1v2)) + log(det(v1, g
k−1v2))− 2 log(det(v1, g

kv2))

fk = log(det(v1, gv1)) + log(det(v2, gv2))− 2 log(det(v1, g
kv2)),

where v1 = h1

(
1
0

)
and v2 = h2

(
1
0

)
. It follows that λ̂([g]) =

∑n
i=1(ek, fk) ∈ B̂(F ).

Since the cycles (8.2) all represent [g], we may choose v1 and v2 as we please
(as long as the vectors v1, gv1, g

kv2, g
k+1v2 in F 2 are in general position) without

effecting the element in B̂(F ). If we let v1 =
(

1
−1

)
and v2 =

(
1
1

)
, we have

(8.4)

det(v1, g
kv2) = det(v1, XµkX−1v2)

= (x2 − 1) det(X−1v1, µ
kX−1v2)

=
1

x2 − 1
det

((
x+1
−x−1

)
, µk

(
x−1
x−1

))

= det
((

1
−1

)
,
(
xk 0
0 x−k

)(
1
1

))

= xk + x−k.
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Letting zk denote the corresponding cross-ratio of (ek, fk), it follows from (8.3) that

zk =
(xk+1 + x−k−1)(xk−1 + x−k+1)

(xk + x−k)2
.

Since p is assumed to be odd, zk ∈ F \ {0, 1}. This proves Theorem 1.3 for p odd.
Suppose p = 2. By computations similar to (8.4) using v1 =

(
1
0

)
and v2 =

(
1
−1

)

we obtain

(8.5) det(v1, g
kv2) =

xk − x−k+1

x− 1
, det(v1, gv1) = 1, det(v2, gv2) = 2+x+x−1.

We wish to prove that λ̂([g]) ∈ B̂(F ) is 2–divisible.
Let ck = det(v1, g

kv2) and let c̃k = log(ck). Also, let a = 2 + x + x−1 and let
ã = log(a). By (8.5), we see that ck = cn−k+1 and ck = −ck+n/2. By (8.3),

(ek, fk) = (c̃k+1 + c̃k−1 − 2c̃k, ã− 2c̃k).

We may choose different logarithms for each k without effecting the element λ̂([g]) =∑n
i=1(ek, fk). We will choose them such that c̃k − c̃n−k+1 and c̃k+n/2 − c̃k are

independent of k and such that 2c̃k = 2c̃k+n/2. With these particular choices, it is

easy to see that λ̂([g]) is 2–divisible. Indeed, λ̂([g]) = 2Q, where

(8.6) Q =

n/2∑

i=1

(ek, fk) ∈ P̂(F ).

We now only need to prove that Q is in B̂(F ). This follows from the computation

ν̂(Q) =
∑n/2

k=1
(c̃k+1 + c̃k−1 − 2c̃k) ∧ (ã− 2c̃k)

=
∑n/2

k=1
2c̃k ∧ (c̃k+1 + c̃k−1)−

∑n/2

k=1
2c̃k ∧ ã+

∑n/2

k=1
(c̃k+1 + c̃k−1) ∧ ã

=
∑n/2

k=1
(2c̃k ∧ c̃k+1 − 2c̃k−1 ∧ c̃k) +

∑n/2

k=1

(
(c̃k+1 − c̃k)− (c̃k − c̃k−1)

)
∧ ã

= 2c̃n/2 ∧ c̃n/2+1 − 2c̃0 ∧ c̃1 + (c̃n/2+1 − c̃1) ∧ ã− (c̃n/2 − c̃0) ∧ ã

= 0 ∈ ∧2(E).

Since

zk =
ck+1ck−1

c2k
=

(xk+1 − x−k)(xk−1 − x−k+2)

(xk − x−k+1)2
∈ F,

this proves Theorem 1.3 for p = 2.
We give some examples below. The computational details are left to the reader.

Example 8.4. For any number field F , which does not contain a 3rd root of unity,
the element 2[−2] + [ 14 ] ∈ B(F ) has order 3.

Example 8.5. Let F = Q(
√
2). Doing the above computations, we obtain that

Q = [
√
2− 1; 0, 0] + [

√
2− 1; 0,−2] + [−

√
2− 1; 0, 0] + [−

√
2− 1;−2,−2] ∈ B̂(F ).

It follows that the element β2 = 2[
√
2 − 1] + 2[−

√
2 − 1] ∈ B(F ) has order 4 and

generates B(F )2. Note that β2 is not 2–divisible. Applying the regulator (2.4), we
get R(Q) = π2/4 ∈ C/4π2, which has order 16 = 2ν2+1 as expected.
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Remark 8.6. The order of the torsion in K ind
3 (F ) is always divible by 24. A partic-

ular generator of the 24–torsion in B̂(F ) is given by the element (e, f)+ (f, e) from
Lemma 3.11. We omit the proof of this.

9. Hyperbolic 3–manifolds

Let M be a complete, oriented, hyperbolic 3–manifold with finite volume, and
let K and k denote the trace field and invariant trace field of M . By a result of
Goncharov [6, Theorem 1.1], M defines an element [M ] in K ind

3 (Q)⊗Q, which equals
the Bloch invariant of M (see e.g. Neumann–Yang [14]) under the isomorphism

K ind
3 (Q)⊗Q ∼= B(Q).

Recall that a spin structure on M is equivalent to a lift of the geometric rep-
resentation to SL(2,C), and that the set of spin structures is an affine space over
H1(M ;Z/2Z). We thank Walter Neumann for assistance with the proof of the
result below.

Theorem 9.1. Suppose M is closed. A spin structure ρ on M determines a
fundamental class [Mρ] in K ind

3 (K) lifting the Bloch invariant. For each α ∈
H1(M ;Z/2Z), the element [Mρ]− [Mαρ] is two-torsion, which is trivial if and only
if the induced map Bα∗ : H3(M) → H3(B(Z/2Z)) = Z/2Z is trivial. In particular,
2[Mρ] is independent of ρ. Moreover, 2[Mρ] is in K ind

3 (k).

Proof. By Reid–Maclachlan [8, Corollary 3.2.4], we may assume that ρ has image
in SL(2,K(λ)), where λ is an algebraic element of degree at most 2 over K. Endow
M with the structure of a closed 3–cycle, and fix an SL(2,K(λ))–cocycle α on M
representing the fundamental class [ρ] of ρ in H3(SL(2,K(λ))); see e.g. Zickert [21,

Section 5]. Let [Mρ] = λ̂([ρ]). Then [Mρ], is given by the ideal cochain c on M

defined by α using (6.10) and (6.9). If λ has degree 1, [Mρ] is obviously in B̂(K).
If λ has degree 2, the non-trivial element in Gal(K(λ),K) preserves traces of ρ (K
is the trace field), and therefore takes ρ to a representation which is conjugate over

C. It follows that the image of [Mρ] in B̂(C) is invariant under Gal(K(λ),K), so

by the Corollaries 7.14 and 7.15, [Mρ] is in B̂(K).
The second statement follows from Theorem 6.15, so we now only need to prove

that 2[Mρ] is in B̂(k). By Neumann–Reid [13, Theorem 2.1], K is Galois over k.
Let σ ∈ Gal(K, k). Since k is the field of squares of traces of ρ, it follows that σρ as
a representation in PSL(2,C) is conjugate to the geometric representation. After a
conjugation (which does not change the fundamental class), we may thus assume
that ρ and σρ are equal as representations in PSL(2,C). Hence, c and σ(c) differ

by a Z/2Z–cocycle, so by Theorem 6.15, 2σ([Mρ]) = 2[Mρ] ∈ B̂(C). As above, this

implies that 2[Mρ] is in B̂(k). �

9.1. Cusped manifolds. If M has cusps, Reid–Maclachlan [8] shows that the
geometric representation has image in PSL(2,K). It thus follows from Theorem 5.3

that M has a fundamental class [M ] ∈ B̂(K)PSL. Neumann–Yang [14] show that
the Bloch invariant of M is always in B(k), but they define B(k) as the kernel of
z 7→ 2z ∧ (1 − z). With our definition, only 2[M ] is in B(k). An explicit example
whith [M ] /∈ B(k) is given by the manifold m009 in the SnapPea census. Similarly,

only 2[M ] is in B̂(k)PSL. Using remark 5.2 one checks that 2[M ] always lifts to
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B̂(k), and by Lemma 5.1, 8[M ] lifts canonically. We do not believe that a canonical
lift of 2[M ] is possible, so this result is likely to be optimal.

9.1.1. Knot complements. If M is a knot complement, Reid–Machlachlan [8, Corol-

lary 4.2.2] implies that K = k. The obstruction to a lift of [M ] ∈ B̂(k)PSL to B̂(k)
is a Z/2Z–valued knot invariant, which by Remark 5.2 is explicitly computable.
For example, [M ] lifts for the figure 8 knot complement and the 52 knot comple-
ment, but not for the 61 knot complement. Since the significance of this invariant
is unclear at this moment, we spare the reader for the computations.
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