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THE EXTENDED BLOCH GROUP

AND THE CHEEGER-CHERN-SIMONS CLASS

SEBASTIAN GOETTE AND CHRISTIAN ZICKERT

Abstract. We present a formula for the full Cheeger-Chern-Simons class of the tautological flat
complex vector bundle of rank 2 over BSL(2, Cδ). Our formula improves the formula in [DZ], where
the class is only computed modulo 2-torsion.

Introduction

The Cheeger-Chern-Simons class ĉk is a natural refinement of the k-th Chern class for com-
plex vector bundles with connection, and it takes values in the ring of differential characters,
see [CnS], [CS]. For a vector bundle with a flat connection, this class becomes an ordinary
(2k − 1)-cohomology class with coefficients in C/Z(k), where Z(k) = (2πi)k Z. Let BSL(n, Cδ)
denote the classifying space of the group SL(n, Cδ) with the discrete topology. The univer-
sal Cheeger-Chern-Simons class ĉk ∈ H2k−1(BSL(n, Cδ), C/Z(k)) of the tautological flat com-
plex vector bundle over BSL(n, Cδ) gives rise to the Borel regulator in algebraic K-theory,
and ĉ2 is also related to invariants of hyperbolic 3-manifolds. One is interested in a combina-
torial description of this class ĉk ∈ H2k−1(BSL(n, Cδ), C/Z(k)). Dupont derived an expression
for ĉ2 ∈ H3(BSL(2, Cδ), C/Z(2)) modulo Q(2) in [D1]. A similar formula for Re ĉ3 is due to
Goncharov, see [G].

The homology of the classifying space of a discrete group is by definition the homology of the
group, and since C/Z(2) is divisible we can regard ĉ2 as a homomorphism H3(SL(2, C)) → C/Z(2).
The natural map H3(SL(2, C)) → H3(PSL(2, C)) has cyclic kernel of order 4, so we have a com-
mutative diagram defining ĉ2 on H3(PSL(2, C)),

H3(SL(2, Cδ))
ĉ2−−−−→ C/Z(2)

y
y

H3(PSL(2, Cδ))
ĉ2−−−−→ C/π2Z .

An explicit formula for the lower map was obtained in [N], and in [DZ] this was extended to a
formula for the upper map. However, the formula given in [DZ] only computes the image of ĉ2

in C/2π2Z, thus only computing ĉ2 up to 2-torsion (see Remark 4.2 in [DZ] for a comment on the
normalization). In the present paper we extend the result in [DZ] obtaining a formula computing
the full Cheeger-Chern-Simons class.

In both [N] and [DZ] the formulas are obtained by factoring ĉ2 through a version of the extended

Bloch group, an object defined by Neumann in [N]. There are two different versions of the extended

Bloch group. One version, denoted B̂(C) in Neumann’s paper, is generated by symbols [z; p, q]
subject to a five term relation and a transfer relation. It is isomorphic to H3(PSL(2, Cδ)). The other
one, denoted EB(C) is generated by symbols [z; 2p, 2q] and only subject to the five term relation.
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The latter version is called the more extended Bloch group, and conjectured to be isomorphic
to H3(SL(2, Cδ)) in [N]. The role of the transfer relation is subtle and has caused some minor
inaccuracies in [N] and [DZ], see Remark 3.10 below. Proposition 8.2 and Corollary 8.3 in [N]
are only correct if we include the transfer relation. Proposition 8.2 has been used in the proof of
Proposition 4.15 in [DZ], so this result is also only correct if we include the transfer relation. To
the best of our knowledge these are the only problems in [N] and [DZ]. We present corrections to
these results as Theorem 3.12, Corollaries 3.14 and 4.2, and Remark 4.3 below.

To obtain the full class ĉ2, we construct a lift of the function L̂ : P̂(C) → C/2π2Z defined in [DZ]
with values in C/4π2Z = C/Z(2). Note that this lift is not compatible with the transfer relation,
see 3.10. This observation was the main motivation for the present note.

The paper is organized as follows: In Section 1 we recall the definition of the extended Bloch
group. In Section 2 we define the modified extended Rogers dilogarithm. In Section 3 we work out
some relations in the extended Bloch group, and in Section 4 we prove our main results that the

extended Bloch group is isomorphic to H3(SL(2, Cδ)) as conjectured in [N], and that L̂ computes

the Cheeger-Chern-Simons class. In Section 5, we have added some more relations in P̂(C) that
might be of interest elsewhere.

Remark. In the present paper we denote the more extended Bloch group B̂(C) instead of EB(C) and
refer to it as the extended Bloch group. This is consistent with the notation in [DZ]. Neumann’s

original extended Bloch group will be named B̂N (C).

We are grateful to J. Dupont, G. Kings and W. Neumann for fruitful discussions and their interest
in our work. Parts of this note were written while the first named author enjoyed the hospitality
of the Chern Institute at Tianjin.

1. The Extended Bloch Group

We follow the description in [N] at the beginning of chapter 8. We first recall the construction
of the classical Bloch group. Define a set of five term relations

FT =

{ (
x, y,

y

x
,
1 − 1/x

1 − 1/y
,
1 − x

1 − y

) ∣∣∣∣ x 6= y ∈ C \ {0, 1}
}

⊂ (C \ {0, 1})5 . (1.1)

Consider the free abelian groups generated by the elements of FT and C \ {0, 1} and the chain
complex

Z[FT]
ρ−−−−→ Z[C \ {0, 1}] ν−−−−→ C× ∧Z C× (1.2)

with arrows defined on generators by

ρ([z0, . . . , z4]) = [z0] − [z1] + [z2] − [z3] + [z4] ,

ν([z]) = z ∧ (1 − z)−1 .

Then P(C) = Z[C \ {0, 1}]/ im ρ is called the pre-Bloch group, and the middle homology of the
complex (1.2) above is called the Bloch group B(C).

Let Ĉ denote the universal abelian cover of C \ {0, 1}. To construct Ĉ, we start with Ccut =
C \ ((−∞, 0] ∪ [1,∞)). For each x ∈ (−∞, 0) ∪ (1,∞), we add two boundary points

x ± 0i := lim
tց0

x ± ti

and put

Ccut = Ccut ∪ {x ± 0i | x ∈ (−∞, 0) ∪ (1,∞) } .

We extend the principal branches of Log, Li2 and Arg = Im Log to Ccut.
2



In Ccut × (2Z)2, identify

(x + 0i, 2p, 2q) ∼ (x − 0i, 2p + 2, 2q) for all x ∈ (−∞, 0), and

(x + 0i, 2p, 2q) ∼ (x − 0i, 2p, 2q + 2) for all x ∈ (1,∞)
(1.3)

for all p, q ∈ Z, obtaining π̂ : Ĉ → C \ {0, 1}. Equivalence classes will be denoted (x; 2p, 2q) or
simply x̂. Note that we could have dropped the factors 2 above and worked in Ccut × Z2 instead,
but we want to stay compatible with [DZ] and [N].

As in [N], put
FT+ =

{
(z0, . . . , z4) ∈ FT

∣∣ Im z0, . . . , Im z4 > 0 } .

Then (z0, . . . , z4) ∈ FT+ iff Im z1 > 0 and z0 is in the interior of the Euclidean triangle spanned

by 0, 1 and z1. Let F̂T denote the connected component of π̂−1(FT) ⊂ Ĉ5 that contains

F̂T
+

=
{

((z0; 0, 0), . . . , (z4; 0, 0))
∣∣ (z0, . . . , z4) ∈ FT+

}
.

Also, note that the functions

(z; 2p, 2q) 7−→ (Log z + 2πi p) and (z; 2p, 2q) 7−→ (−Log(1 − z) + 2πi q)

are holomorphic on Ĉ. By [DZ], we can extend (1.2) to a chain complex

Z
[
F̂T

] bρ−−−−→ Z
[
Ĉ

] bν−−−−→ C ∧Z C (1.4)

with arrows defined on generators by

ρ̂([ẑ0, . . . , ẑ4]) = [ẑ0] − [ẑ1] + [ẑ2] − [ẑ3] + [ẑ4] ,

ν̂([z; 2p, 2q]) = (Log z + 2πi p) ∧ (−Log(1 − z) + 2πi q) .

1.5. Definition. The extended pre-Bloch group P̂(C) is defined as the quotient Z[Ĉ]/ im ρ̂, and the

extended Bloch group B̂(C) as the middle homology of the complex (1.4).

2. The Extended Rogers Dilogarithm

The classical dilogarithm is given by

Li2(z) =

∞∑

k=1

zk

k2
= −

∫ z

0
log(1 − t)

dt

t

for all z with |z| < 1. It extends to a multivalued function on C with branch points at 0, 1 and ∞.
Recall that the Rogers dilogarithm L : (0, 1) → R is given by

L(x) = Li2(x) +
1

2
log x log(1 − x) − π2

6
.

We extend L to a holomorphic function

L : Ccut × (2Z)2 −→ C ,

L(z; 2p, 2q) = Li2(z) +
1

2

(
Log z + 2πi p

) (
Log(1 − z) + 2πi q

)
− π2

6
.

(2.1)

2.2. Lemma. The function L above induces a holomorphic function

L̂ : Ĉ → C/Z(2)

that satisfies the five term relation
4∑

k=0

(−1)kL̂(ẑk) = 0

for all (ẑ0, . . . , ẑ4) ∈ F̂T.
3



Note that L̂ lifts the function L̂ in [DZ] from C/2π2Z to C/4π2Z = C/Z(2).

Proof. Because Li2(z) has no singularity at z = 0 and (z; p, q) 7→ Log z +2πip is holomorphic on Ĉ,

the function L extends holomorphically across (−∞, 0) × (2Z)2 in Ĉ.
If we extend Li2 and Log(1 − z) to z ± 0i for z > 1, then

Li2(z + 0i) = Li2(z − 0i) + 2πi Log z

Log(1 − (z + 0i)) = Log(1 − (z − 0i)) − 2πi .

Hence

L(z + 0i; 2p, 2q) = L(z − 0i; 2p, 2q + 2) + 4π2 p ,

so the extension L̂ of L mod 4π2 is well-defined.
By [N], we have a five term relation

4∑

k=0

(−1)kL(ẑk) = 0 ∈ C

for all (ẑ0, . . . , ẑ4) ∈ F̂T
+
. Because F̂T is a connected complex manifold, the five term relation

for L̂ holds in C/Z(2) for all (ẑ0, . . . , ẑ4) ∈ F̂T by analytic continuation. �

2.3. Remark. Along the commutator of a small loop around 0 and a small loop around 1 in C\{0, 1},
the holomorphic continuation of the Rogers dilogarithm changes by 4π2. This shows that we cannot

lift L to a holomorphic function on Ĉ with values in C/A, with A ⊂ Z(2) a proper subgroup.

2.4. Corollary. The function L̂ induces homomorphisms

L̂ : P̂(C) → C/Z(2) and L̂ : B̂(C) → C/Z(2) .

3. Relations in the Extended Bloch Group

Following [N], we find relations among elements of the extended pre-Bloch group. We then

parametrize the kernel of the forgetful maps P̂(C) → P(C) and B̂(C) → B(C) induced by the

projection π̂ : Ĉ → C. In the following, we will identify z ∈ (−∞, 0) ∪ (1,∞) with z + 0i.
As explained in the appendix of [DZ], we have

π̂−1(FT+) ∩ F̂T =
{ ((

z0; 2p0, 2q0

)
,
(
z1; 2p1, 2q1

)
,
(
z2; 2(p1 − p0), 2q2

)
,

(
z3; 2(p1 − p0 + q1 − q0), 2(q2 − q1)

)
,
(
z4; 2(q1 − q0), 2(q2 − q1 − p0)

))

∣∣∣ (z0, . . . , z4) ∈ FT+ and p0, p1, q0, q1, q2 ∈ Z

}
. (3.1)

For other choices of (z0, . . . , z4) ∈ FT, a few of the pk, qk have to be adjusted by ±1.
Subtracting two instances of the five term relation and using (1.1) and (3.1), we obtain Neumann’s

cycle relation

[x; 2p0, 2q0 − 2] − [y; 2p1, 2q1 − 2] +
[y

x
; 2p1 − 2p0, 2q2 − 2

]

= [x; 2p0, 2q0] − [y; 2p1, 2q1] +
[y

x
; 2p1 − 2p0, 2q2

]

4



for all x, y such that
(
x, y, y

x , 1−1/x
1−1/y , 1−x

1−y

)
∈ FT+. If we vary x and y continuously, then some of

the integers in this relation may jump. Thus, we obtain

[x; 2p0, 2q0 − 2] − [x; 2p0, 2q0] − [y; 2p1, 2q1 − 2] + [y; 2p1, 2q1]

=






[ y
x ; 2p1 − 2p0 − 2, 2q2 − 2

]
−

[ y
x ; 2p1 − 2p0 − 2, 2q2

]
if Arg y − Arg x ≤ −π ,[ y

x ; 2p1 − 2p0, 2q2 − 2
]
−

[ y
x ; 2p1 − 2p0, 2q2

]
if − π < Arg y − Arg x ≤ π ,[ y

x ; 2p1 − 2p0 + 2, 2q2 − 2
]
−

[ y
x ; 2p1 − 2p0 + 2, 2q2

]
if π < Arg y − Arg x .

(3.2)

Subtracting two instances of (3.2) gives

[x; 2p, 2(q − 1)] − [x; 2p, 2q] = [x; 2p, 2(q′ − 1)] − [x; 2p, 2q′] (3.3)

for all x ∈ Ccut. Similarly, one can prove

[x; 2(p − 1), 2q] − [x; 2p, 2q] = [x; 2(p′ − 1), 2q] − [x; 2p′, 2q] (3.4)

and [x; 2(p + 1), 2(q − 1)] − [x; 2p, 2q] = [x; 2(p′ + 1), 2(q′ − 1)] − [x; 2p′, 2q′] (3.5)

for all x ∈ Ccut and all p, q, p′, q′ ∈ Z such that p′ + q′ = p + q. See [N] for a more geometric
derivation of these relations.

By Lemma 7.3 in [N], we also have the relation

[z; 2p, 2q] + [1 − z;−2q,−2p] = 2

[
1

2
; 0, 0

]
, (3.6)

which is of course compatible with (3.3)–(3.5).
Let us define

{z; 2p} = [z; 2p, 2q] − [z; 2p, 2(q − 1)] ,

which is independent of q by (3.3).

3.7. Lemma. For all z, w ∈ Ccut with zw 6= 1, we have the relation

{z; 2p} + {w; 2r} =






{zw + 0i; 2(p + r − 1)} if Arg z + Arg w ≤ −π,

{zw + 0i; 2(p + r)} if −π < Arg z + Arg w ≤ π, and

{zw + 0i; 2(p + r + 1)} if π < Arg z + Arg w.

Proof. This is immediate from (3.2). �

3.8. Lemma. The element κ̂ = {z; 2p} − {z; 2(p − 1)} ∈ P̂(C) is independent of z ∈ C \ {0, 1}
and p ∈ Z, and of order 2 in P̂(C).

Proof. Independence of p follows from (3.4) and independence of z is immediate from Lemma 3.7.
To proof that κ̂ is of order two, use (3.3) and (3.6) to write

κ̂ = [z; 2, 0] − [z; 2,−2] − [z; 0, 0] + [z; 0,−2]

= −[1 − z; 0,−2] + [1 − z; 2,−2] + [1 − z; 0, 0] − [1 − z; 2, 0]

= {1 − z; 0} − {1 − z; 2} = −κ̂ .

To show that κ̂ 6= 0, we compute

L̂(κ̂) = L̂(z; 2, 2) − L̂(z; 2, 0) − L̂(z; 0, 2) + L̂(z; 0, 0) = −2π2 , (3.9)

and −2π2 6= 0 in C/Z(2). �

5



3.10. Remark. In [N], Section 8, and [DZ], Proposition 4.15, it has been assumed implicitly that κ̂ =
0. More precisely, Neumann introduces a “transfer relation”

[z; p, q] + [z; p′, q′] = [z; p, q′] + [z; p, q′] for all p, q, p′, q′ ∈ Z

in the definition of his extended Bloch group. The analogous relation in our context would read

[z; 2p, 2q] + [z; 2p′, 2q′] = [z; 2p, 2q′] + [z; 2p, 2q′] for all p, q, p′, q′ ∈ Z .

In analogy with Proposition 7.2 in [N], one can show that the effect of the transfer relation above
is equivalent to dividing by the subgroup of order two that is generated by κ̂.

We have just computed L̂(κ̂) = −2π2 ∈ C/4π2Z in (3.9). This explains that if one includes the

transfer relation, then L̂ is well-defined only modulo 2π2Z as in [DZ].
Assuming that κ̂ = 0, one finds that {z; 2p} becomes independent of p. This allows to define a

homomorphism C× → P̂(C)/〈κ̂〉 with z 7→ {z; 0}, see [N], Proposition 8.2.

Starting from Neumann’s map, we obtain a pullback square

C× bχ−−−−→ P̂(C)
y

y

C× −−−−→ P̂(C)/〈κ̂〉 .

Here the left vertical arrow maps z to z2, and χ̂ is given by

χ̂(z) =






0 if z = 1,

κ̂ if z = −1,

{z2 + 0i; 0} if Arg z ∈
(
−π

2 , π
2

]
and z 6= 1, and

{z2 + 0i; 2} if Arg z /∈
(
−π

2 , π
2

]
and z 6= −1.

(3.11)

3.12. Theorem. The map χ̂ is a homomorphism, and the sequence

0 −−−−→ C× bχ−−−−→ P̂(C) −−−−→ P(C) −−−−→ 0

is exact and split, where the right arrow is induced by π̂ : Ĉ → C \ {0, 1}.

Proof. First of all we note that by the definition of κ̂ and Lemma 3.8,

{z2; 2p} + κ̂ = {z2; 2p + 2} = {z2; 2p − 2} ,

which implies that χ̂(z) + χ̂(−1) = χ̂(−z), and that {z2, 2p + 4} = {z2; 2p}. By Lemma 3.7, we
have χ̂(z) + χ̂(w) = χ̂(zw) for almost all choices of z, w ∈ C×. The remaining cases are easily
checked.

The right arrow maps {z; 2p} = [z; 2p, 2] − [z; 2p, 0] to [z] − [z] = 0, so the sequence above is a

chain complex. To prove injectivity of χ̂ consider the composition L̂ ◦ χ̂. For z ∈ C× let p = 0
if Arg z ∈

(
−π

2 , π
2

]
and p = 1 if Arg z /∈

(
−π

2 , π
2

]
. Then

Log(z2 + 0i) + 2πi p ≡ 2Log z modulo 2πiZ ,

and

(L̂ ◦ χ̂)(z) =
1

2

(
(Log z2 + 2πi p)(Log(1 − z2) + 2πi) − (Log z2 + 2πi p) Log(1 − z2)

)

= 2πi Log z ∈ C/Z(2) ,
(3.13)

and this even holds for z = ±1, cf. (3.9), hence χ̂ is injective.
6



It remains to show that im χ̂ = ker(P̂(C) → P(C)). Relations (3.3) and (3.4) allow to represent

each generator of P̂(C) as

[z; 2p, 2q] = pq [z; 2, 2] − p(q − 1) [z; 2, 0] − (p − 1)q [z; 0, 2] + (p − 1)(q − 1) [z; 0, 0] ,

see [N], Lemma 7.1. Using (3.6), we see that the kernel of P̂(C) → P(C) is generated by elements
of the form

[z; 2p, 2q] − [z; 0, 0] = pq {z; 2} − (p − 1)q {z; 0} + p {1 − z; 0} ∈ im χ̂ .

By (3.13), a splitting of the sequence is given by the homomorphism exp ◦ bL
2πi : P̂(Z) → C×. �

3.14. Corollary. The sequence

0 −−−−→ Q/Z
α7→bχ(e2πi α)−−−−−−−−→ B̂(C) −−−−→ B(C) −−−−→ 0

is exact, and
1

(2πi)2
L̂

(
χ̂(e2πi α)

)
= α .

4. The Cheeger-Chern-Simons Class and H3(SL(2, Cδ))

Recall that a map λ̂ : H3(SL(2, Cδ)) → B̂(C) has been constructed in [DZ], Section 3, without

using the transfer relation. Following [DZ], we prove that L̂ ◦ λ̂ = ĉ2 ∈ C/Z(2) and conclude from

this that λ̂ is an isomorphism.
Note that because C/Z(2) is divisible, there is a canonical isomorphism

H3
(
SL(2, Cδ), C/Z(2)

) ∼= HomZ

(
H3(SL(2, Cδ)), C/Z(2)

)
.

Let ĉ2 ∈ H3(SL(2, Cδ), C/Z(2)) denote the second Cheeger-Chern-Simons class of the tautological
flat complex vector bundle of rank 2 over BSL(2, Cδ). Here, we are using the same normalisation
as [N]. In [DZ], the class 1

(2πi)2
ĉ2 ∈ H3(SL(2, Cδ), C/Z) is considered, see [DZ], Remark 4.2.

4.1. Theorem (cf. [DZ], Theorem 4.1). Under the isomorphism above,

ĉ2 = L̂ ◦ λ̂ .

Proof. By Theorem 4.1 in [DZ], we have that

2ĉ2 = 2L̂ ◦ λ̂ ∈ HomZ

(
H3(SL(2, Cδ)), C/Z(2)

)

in our normalisation. Because H3(SL(2, Cδ)) is divisible, this implies our claim. �

4.2. Corollary (cf. [DZ], Theorem 4.15). The map λ̂ : H3(SL(2, Cδ)) → B̂(C) is an isomorphism.

Proof. Consider the commutative diagram

0 −−−−→ Q/Z
ι−−−−→ H3(SL(2, Cδ))

λ−−−−→ B(C) −−−−→ 0
∥∥∥

ybλ

∥∥∥

0 −−−−→ Q/Z
bχ(e2πi · )−−−−−→ B̂(C) −−−−→ B(C) −−−−→ 0 .

The upper row has been established in [DS] and is exact. The lower row is just Corollary 3.14.
Commutativity of the right hand square has been established in [DZ], Section 3.

Let α ∈ Q, then 1
(2πi)2 (ĉ2 ◦ ι)(α) = α by [D2], Theorem 10.2. Theorem 4.1 implies that

1

(2πi)2
L̂

(
(λ ◦ ι)(α)

)
=

1

(2πi)2
(ĉ2 ◦ ι)(α) = α ,

7



and (λ◦ ι)(α) ∈ ker
(
B̂(C) → B(C)

)
by commutativity of the right hand square. On the other hand,

Corollary 3.14 implies that
1

(2πi)2
L̂

(
χ̂(e2πiα)

)
= α ,

and that L̂ is injective on ker
(
B̂(C) → B(C)

)
. Thus the left hand square also commutes. Our claim

now follows from the five-lemma. �

4.3. Remark. Let B̂N (C) ∼= H3(PSL(2, C)) denote Neumann’s extended Bloch group in [N]. Then
the diagramme

0 0
y

y

Z/4Z Z/4Z
y bχ(i) ·

y

0 −−−−→ Q/Z
bχ(e2πi · )−−−−−→ B̂(C) −−−−→ B(C) −−−−→ 0

4 ·

y b

y
∥∥∥

0 −−−−→ Q/Z
χ(e2πi · )−−−−−→ B̂N (C) −−−−→ B(C) −−−−→ 0

y
y

0 0

commutes and has exact rows and columns. Here the map b : B̂(C) → B̂N (C) sends a genera-

tor [z, 2p, 2q] to the same generator in B̂N (C), and χ has been defined in [N], Proposition 7.4. This
is proved in analogy with Corollary 8.3 in [N]. For example, commutativity of the lower left hand
square follows from

(b ◦ χ̂)(z) = [z2; 2p, 2] − [z2; 2p, 0] = 2
(
[z2; 2p, 1] − [z2; 2p, 0]

)
= 2χ(z2) = 4χ(z) ∈ P̂N (C) .

This also shows that ker b is spanned by χ̂(i) = {−1; 0}.

5. More Relations in the Extended pre-Bloch Group

By [DS], one has the relations

[z] = −[1 − z] =

[
1

1 − z

]
= −

[
− z

1 − z

]
=

[
1 − 1

z

]
= −

[
1

z

]
.

in the pre-Bloch group P(C). If we interpret z as the cross-ratio of a generic configuration of
four points in CP 1, then these relations say that up to orientation, the order of the points is not
important. Note that Im ĉ2 is already well-defined on B(C).

Similar relations hold in Neumann’s extended pre-Bloch group P̂N (C) by Proposition 13.1 in [N].
As a consequence, unordered oriented simplices are also sufficient to compute Re ĉ2 up to some finite

ambiguity. Unfortunately, these relations become more complicated in P̂(C). Let 4
√

z denote the
standard fourth root of z with Arg 4

√
z ∈

(
−π

4 , π
4

]
.

5.1. Proposition. Let Im z > 0. Then
[
1

z
;−2p, 2p + 2q

]
= −[z; 2p, 2q] + χ̂

(
ip 4
√

z
)

, (1)

[
1 − 1

z
;−2p − 2q; 2p

]
= [z; 2p, 2q] − χ̂

(
e−

πi
12 (1−6p) 4

√
z
)

, (2)
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[
− z

1 − z
; 2p + 2q,−2q

]
= −[z; 2p, 2q] + χ̂

(
e−

πi
12 (1+6q) 4

√
z − 1

)
, (3)

[
1

1 − z
; 2q,−2p − 2q

]
= [z; 2p, 2q] − χ̂

(
e−

πi
12 (2+6q) 4

√
z − 1

)
, (4)

[1 − z;−2q,−2p] = −[z; 2p, 2q] + χ̂
(
e

πi
12

)
. (5)

Proof. The involutions

[z; 2p, 2q] 7→ [1 − z;−2q,−2p] and [z; 2p, 2q] 7→
[
1

z
;−2p; 2p + 2q

]

generate an action of S(3) on Ĉ. Using Im
(
1 − 1

z

)
> 0 and Im 1

1−z > 0, it is now easy to see

that the five relations above follow from (1) and (5). Note that by [DS], both relations are true

modulo ker
(
P̂(C) → P(C)

)
= im χ̂. Because the Rogers dilogarithm L̂ is injective on im χ̂ by (3.13),

it suffices to check both relations after applying L̂. This can be done using some elementary facts
about the classical dilogarithm, and is thus left to the reader. �

5.2. Remark. The relations in [N] look somewhat nicer, since the correction term does not involve

the variable z. This is possible because in Neumann’s definition of P̂N (C), odd integers are allowed,
so that one can consider the involution [z; p, q] 7→ [1/z;−p, 1 + p + q].

Following [N], the various terms on the left hand side of the equations in Proposition 5.1 cor-
respond to flattenings of a given oriented simplex with different orderings of vertices. Thus the
proposition seems to indicate that it is not enough to consider unordered oriented simplices if one
wants to compute the full class ĉ2.

For higher classes ĉk, not many formulas are available. The only formula known to the authors
is the formula for Re ĉ3 in [G], which uses unordered oriented simplices.
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