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THE VOLUME AND CHERN�SIMONS INVARIANTOF A REPRESENTATIONCHRISTIAN K. ZICKERTAbstrat. We give an e�ient simpliial formula for the volume and Chern�Simons invariant of a boundary-paraboli PSL(2, C)�representation of a tame
3�manifold. If the representation is the geometri representation of a hyper-boli 3�manifold, our formula omputes the volume and Chern�Simons invari-ant diretly from an ideal triangulation with no use of additional ombinatorialtopology. In partiular, the Chern�Simons invariant is omputed just as easilyas the volume. IntrodutionThe volume and Chern�Simons invariant are two interesting and important in-variants of a hyperboli 3�manifold. We will always assume that a hyperboli 3�manifold is omplete, oriented and of �nite volume, so that the hyperboli strutureis unique. Reall that the Chern�Simons invariant of a losed hyperboli 3�manifold

M is de�ned by the formula
cs(M) =

1

8π2

∫

s(M)

Tr(A ∧ dA +
2

3
A ∧ A ∧ A

)
∈ R/Z.Here A is the onnetion in the orthonormal frame bundle given by the hyperbolimetri, and s(M) is an orthonormal frame �eld, i.e. a setion of the orthonormalframe bundle. The de�nition of the Chern�Simons invariant extends to hyperbolimanifolds with usps using so-alled �speial singular frame �elds� that are linearnear the usps. See Meyerho� [10℄ for details. In the usped ase the Chern�Simonsinvariant is only de�ned modulo 1/2.The Chern�Simons invariant is intimately related to the hyperboli volume, andthe two invariants are often regarded as the real and imaginary part of a so-alledomplex volume given by

Vol(M) + i CS(M) ∈ C/iπ2Z,where CS(M) = 2π2 cs(M) ∈ R/π2Z.A very interesting feature of the omplex volume is that it an be realized asa harateristi lass of �at PSL(2, C)�bundles alled the Cheeger�Chern�Simonslass. This lass satis�es that the harateristi ohomology lass of the anonial�at PSL(2, C)�bundle over a losed hyperboli 3�manifold gives the omplex volumewhen evaluated on the fundamental lass.2000 Mathematis Subjet Classi�ation. 58J28, 57M27.Key words and phrases. Chern�Simons invariant, omplex volume, Cheeger�Chern�Simonslass, hyperboli 3�manifold, boundary-paraboli representation, extended Bloh group, ideal tri-angulation, ross-ratio, Rogers dilogarithm, trunated simplex, volume onjeture.1
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2 CHRISTIAN K. ZICKERTThe anonial �at PSL(2, C)�bundle over a hyperboli 3�manifold M admits aunique bundle map to the universal �at PSL(2, C)�bundle over the lassifying spae
B(PSL(2, C)), where PSL(2, C) is regarded as a disrete group. This means that itis enough to study the harateristi lass of the universal bundle. This lass liesin H3(B(PSL(2, C)), C/π2Z), and sine C/π2Z is divisible, we an regard it as ahomomorphism

ĉ2 : H3(PSL(2, C)) → C/π2Z.As usual, we have identi�ed the homology of a disrete group with the homologyof its lassifying spae. If M is losed, the fundamental lass of M determines afundamental lass in H3(PSL(2, C)), and the image of this lass under the homo-morphism ĉ2 is i(Vol(M) + i CS(M)).Note that if M is losed, CS(M) is naturally de�ned in R/2π2Z, whereas theimage of ĉ2 is in C/π2Z. It is known that ĉ2 does not admit a lift to C/2π2Z, sothe 2�torsion of the Chern�Simons invariant of a losed hyperboli manifold is notdeteted by the fundamental lass.In [12℄ Neumann has obtained an expliit formula for ĉ2, and the omputation ofthe omplex volume of a losed hyperboli manifold thus amounts to determiningits fundamental lass in H3(PSL(2, C)). This, however, is quite di�ult in general.Neumann gets around this by onstruting a group B̂(C), alled the extended Blohgroup, whih is isomorphi to H3(PSL(2, C)), but more suitable for geometri pur-poses. He de�nes a map R : B̂(C) → C/π2Z using an extended version of Rogersdilogarithm, and shows that under the identi�ation of B̂(C) with H3(PSL(2, C)),the map R orresponds to ĉ2. He shows that every hyperboli manifold de�nes anelement in B̂(C) whose image under R is the omplex volume (times i), and he thusobtains a formula for the omplex volume that applies to usped manifolds as well.Neumann's formula has been implemented in Snap, a freely available omputerprogram [6℄ for numerial omputation of invariants of hyperboli 3�manifolds. Theformula works quite e�iently for manifolds with few simplies, but it involves someompliated ombinatorial topology whih slows down omputations remarkablywhen the number of simplies inreases. For example, if the number of simplies isaround thirty or so, it will generally take Snap more than half an hour to omputethe omplex volume.In this paper we present a new approah whih makes use of the relative homol-ogy group H3(PSL(2, C), P ), where P is the subgroup of upper triangular matrieswith 1 on the diagonal. We show in Setion 3 that this group an be omputedusing a omplex generated by ideal hyperboli simplies endowed with a deorationonsisting of a horosphere at eah ideal vertex together with an identi�ation of thehorosphere with C. Suh a deoration naturally endows eah ideal simplex with a�attening, and we use this to de�ne a map
Ψ: H3(PSL(2, C), P ) → B̂(C).The formula is diret, and involves no ombinatorial topology.In setion 5 we show that a tame 3�manifold M with a boundary-paraboli

PSL(2, C)�representation ρ de�nes a fundamental lass in H3(PSL(2, C), P ), whihis de�ned one we have piked a deoration of ρ onsisting of a hoie of onjugationof the ρ�image of eah peripheral subgroup into P . Given a topologial triangu-lation of M , we an onstrut an expliit representative of the fundamental lassin the omplex of deorated ideal simplies mentioned above. This is done using



THE COMPLEX VOLUME OF A REPRESENTATION 3a developing map, whose purpose is to endow eah simplex in the triangulationwith the shape of an ideal simplex. The developing map naturally translates thedeoration of ρ into a deoration of the ideal simplies by horospheres. We stressthat M does not have to be hyperboli, and the boundary omponents of M̄ do nothave to be tori.The image of the fundamental lass in B̂(C) turns out to be independent of thehoie of deoration, and we an de�ne the omplex volume of a boundary-parabolirepresentation ρ by the formula
i(Vol(ρ) + i CS(ρ)) = R ◦ Ψ([ρ]),where [ρ] is a fundamental lass. The formula agrees with that of Neumann in thespeial ase where ρ is the geometri representation of a hyperboli 3�manifold.Sine every step of the proess is natural and expliit, it allows us to omputethe omplex volume in an instant even for manifolds with a high number of sim-plies. As an example, we ompute the omplex volumes of all boundary-parabolirepresentations of the 52 knot omplement.The set of boundary-paraboli representations of M is often �nite, and the setof omplex volumes of these is an invariant of M . If M is hyperboli, this invariantan be viewed as a generalization of the Borel regulator of M , whih onsists of theset of volumes of the Galois onjugates of the geometri representation.Most of the theory works in a more general setup. We show in Setion 5 thatany G�representation mapping boundary urves to onjugates of a �xed subgroup

H , de�nes a fundamental lass in H3(G, H), whih is de�ned up to a hoie of de-oration. In the general setup, a deoration is a hoie of element in the normalizerquotient NG(H)/H for eah end. The generality of this approah suggests that thetheory might have appliations to the Chern�Simons theory of other Lie groups.Setion 7 is a brief disussion of representations in SL(2, C). We show that ausped hyperboli manifold with a spin struture determines a fundamental lassin H3(SL(2, C)) whih is de�ned up to 2�torsion. This 2�torsion ambiguity isintrinsi, and has the interesting onsequene that a large lass of usped hyperbolimanifolds, inluding hyperboli knot omplements, don't have ideal triangulationsadmitting strong, even valued �attenings. This may be true for all hyperbolimanifolds. In Dupont�Zikert [4℄ and Goette�Zikert [5℄ we obtained formulas forthe Cheeger�Chern�Simons lass ĉ2 : H3(SL(2, C)) → C/4π2Z, whih is related tohyperboli manifolds with spin strutures. The formulas use even valued �attenings,and it is thus not lear how to apply these formulas to hyperboli manifolds. Infat, the results of the present paper were derived in an attempt to improve this.Aknowledgements. I wish to thank Walter Neumann for numerous enlighteningdisussions about this work and for his omments on preliminary versions of thispaper. I also wish to thank Stavros Garoufalidis, Johan Dupont, Mar Culler andCharlie Frohmann for their interest in my work. Finally, I wish to thank the Danishgrant �Rejselegat for Matematikere� for �nanial support.1. The extended Bloh groupIn this setion we reall the de�nition of the extended Bloh group and some ofits basi properties. The general referene for this is Neumann [12℄. We start byrealling the de�nition of the lassial Bloh group.



4 CHRISTIAN K. ZICKERTDe�nition 1.1. The pre-Bloh group P(C) is an abelian group generated by sym-bols [z], z ∈ C\{0, 1} subjet to the relation(1.1) [x] − [y] + [
y

x
] − [

1 − x−1

1 − y−1
] + [

1 − x

1 − y
] = 0.This relation is alled the �ve term relation.De�nition 1.2. The Bloh group B(C) is the kernel of the homomorphism

ν : P(C) → ∧2
Z(C∗)de�ned by mapping a generator [z] to z ∧ (1 − z).Let H3 denote hyperboli 3�spae and let H̄3 denote its standard ompati�a-tion. Unless otherwise spei�ed, we shall always use the upper half spae model for

H3, whih provides us with a natural identi�ation of ∂H̄3 with C ∪ {∞}. In all ofthe following we identify the group of orientation preserving isometries of H3 with
PSL(2, C). The ation of PSL(2, C) on H3 extends uniquely to an ation on H̄3,with the ation on ∂H̄3 = C∪{∞} being given by frational linear transformations.An ideal simplex is a geodesi 3�simplex whose verties z0, z1, z2, z3 all lie in
∂H̄3 = C ∪ {∞}. We onsider the vertex ordering as part of the data de�ning anideal simplex. It is well known that the orientation preserving ongruene lass ofan ideal simplex is given by the ross-ratio(1.2) z = [z0 : z1 : z2 : z3] =

(z0 − z3)(z1 − z2)

(z0 − z2)(z1 − z3)
∈ C\{0, 1}.An ideal simplex is �at if and only if the ross-ratio is real, and if it is not �at,the orientation given by the vertex ordering agrees with the orientation inheritedfrom H3 if and only if the ross-ratio has positive imaginary part. Sine an idealsimplex is determined up to ongruene by its ross-ratio, we an regard the pre-Bloh group as being generated by (ongruene lasses of) ideal simplies. In thispiture the �ve term relation is equivalent to the relation(1.3) 4∑

i=0

(−1)i[z0 : · · · : ẑi : · · · : z4] = 0,whih implies that an element in P(C) is invariant under 2�3 moves and 1�4 movesof the ideal simplies. See e.g. Neumann [12℄ for a desription of these moves.It easily follows from (1.2) that an even permutation of the zi's replaes z byone of three so-alled ross-ratio parameters.
z, z′ =

1

1 − z
, z′′ = 1 − 1

z
.In the following we let Log denote a partiular branh of logarithm that we �xone and for all. In onrete examples we will always use the prinipal branhhaving imaginary part in the interval (−π, π].De�nition 1.3. Let ∆ be an ideal simplex with ross-ratio z. A �attening of ∆ isa triple of omplex numbers of the form(1.4) (w0, w1, w2) =

(
Log z + pπi,−Log(1 − z) + qπi,

− Log(z) + Log(1 − z) − pπi − qπi
)with p, q ∈ Z. We all w0, w1 and w2 log-parameters. Up to multiples of πi, thelog-parameters are logarithms of the ross-ratio parameters.



THE COMPLEX VOLUME OF A REPRESENTATION 5One an show that the set of �attened simplies has a natural struture as aRiemann surfae with four omponents orresponding to the parities of p and q. Itis a Z × Z over of C\{0, 1}. We will not need this here.Remark 1.4. Note that the log-parameters uniquely determine z. We an thus writea �attening as [z; p, q]. This notation, however, depends on the hoie of logarithmbranh.In the following we will assoiate ross-ratio parameters and log-parameters tothe edges of a �attened ideal simplex as indiated in Figure 1.
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Figure 1: Assoiating ross-ratio parameters and log-parametersto edges of a �attened ideal simplex.De�nition 1.5. Let z0, . . . , z4 be �ve distint points in C∪{∞} and let ∆i denotethe simplies [z0, . . . , ẑi, . . . , z4]. Suppose (wi
0, w

i
1, w

i
2) are �attenings of the sim-plies ∆i. Every edge [zizj] belongs to exatly three of the ∆i's and therefore hasthree assoiated log-parameters. The �attenings are said to satisfy the �atteningondition if for eah edge the signed sum of the three assoiated log-parameters iszero. The sign is positive if and only if i is even.It follows diretly from the de�nition that the �attening ondition is equivalentto the following ten equations.

[z0z1] : w2
0 − w3

0 + w4
0 = 0 [z0z2] : −w1

0 − w3
2 + w4

2 = 0

[z1z2] : w0
0 − w3

1 + w4
1 = 0 [z1z3] : w0

2 + w2
1 + w4

2 = 0

[z2z3] : w0
1 − w1

1 + w4
0 = 0 [z2z4] : w0

2 − w1
2 − w3

0 = 0

[z3z4] : w0
0 − w1

0 + w2
0 = 0 [z3z0] : −w1

2 + w2
2 + w4

1 = 0

[z4z0] : −w1
1 + w2

1 − w3
1 = 0 [z4z1] : w0

1 + w2
2 − w3

2 = 0

(1.5)De�nition 1.6. The extended pre-Bloh group P̂(C) is the free abelian group on�attened ideal simplies subjet to the relations(i) ∑4
i=0(−1)i(wi

0, w
i
1, w

i
2) = 0 if the �attenings satisfy the �attening ondition.(ii) [z; p, q] + [z; p′, q′] = [z; p, q′] + [z; p′, q].The �rst relation obviously lifts the relation (1.3). It is therefore alled the lifted�ve term relation. The seond relation is alled the transfer relation and it plays amore subtle role. We refer to Goette�Zikert [5℄ and Neumann [12℄ for a disussion.



6 CHRISTIAN K. ZICKERTDe�nition 1.7. The extended Bloh group B̂(C) is the kernel of the homomorphism
ν̂ : P̂(C) → ∧2

Z(C)de�ned on generators by (w0, w1, w2) 7→ w0 ∧ w1.The relationship between the extended Bloh group and the lassial Bloh groupis summarized in the diagram below, whih is taken from Neumann [12℄.Theorem 1.8. There is a ommutative diagram with exat rows and olumns.
0

��

0

��

0

��

0 // µ∗ //

χ

��

C∗ //

χ

��

C∗/µ∗ //

β

��

0

��

0 // B̂(C) //

π

��

P̂(C)
bν

//

π

��

∧2
Z
(C) //

ǫ

��

K2(C) // 0

0 // B(C) //

��

P(C)
ν

//

��

∧2
Z
(C∗)

��

// K2(C) //

��

0

0 0 0 0Here µ∗ is the group of roots of unity, and the maps not already de�ned above, arede�ned as follows:
χ(z) = [z; 0, 1]− [z; 0, 0];

β([z]) = log(z) ∧ πi;

ǫ(x ∧ y) = − exp(x) ∧ exp(y);

π([z; p, q]) = [z].In [12℄ Neumann shows that the map
L̂ : P̂(C) → C/π2Z

[z; p, q] 7→ L(z) +
πi

2
(q Log(z) + p Log(1 − z)) − π2/6(1.6)is well de�ned. Here L(z) = −

∫ z

0
Log(1−t)

t
dt + 1

2 Log(z) Log(1 − z) is Rogers dilog-arithm. The map L̂ is denoted by R in Neumann [12℄.Remark 1.9. As mentioned in Remark 1.4, the representation of a �attening as
[z; p, q] depends on the hoie of logarithm branh, but one an hek that theexpression (1.6) is independent of this hoie.2. Relative homology of groupsReall that the homology of a disrete group G is equal to the singular homologyof its lassifying spae BG, and an be alulated as H∗(F∗ ⊗G Z), where F∗ is anyfree G�resolution of Z.Let H be a subgroup of G and let Cof(i) denote the o�ber (mapping one) ofthe map BH → BG indued by inlusion. We de�ne the relative homology, denoted



THE COMPLEX VOLUME OF A REPRESENTATION 7
H∗(G, H), to be the redued singular homology groups H̃∗(Cof(i); Z). Regarding
BH as a subspae of BG, this is isomorphi to H∗(BG, BH ; Z).For any set X we an onstrut a omplex C∗(X) of abelian groups by letting
Cn(X) be the free abelian group generated by (n+1)�tuples of elements of X . Theboundary map is given by

∂(x0, . . . , xn) =

n∑

i=0

(−1)i(x0, . . . , x̂i, . . . , xn).The omplex C∗(X) is ayli in dimensions greater than 0 and H0(C∗(X)) = Z.If X is a group G, left multipliation endows Cn(G) with the struture of a free
G�module and C∗(G) beomes a free G�resolution of Z. Hene, the omplex(2.1) B∗(G) = C∗(G) ⊗Z[G] Zalulates the homology of G. Theorem 2.1 below gives a similar desription ofrelative homology in terms of free resolutions. This is probably well known, butsine we don't know of any referene we inlude a proof.Theorem 2.1. Let H be a subgroup of G and let K be the kernel of the augmen-tation map C0(G/H) → Z. For any free G�resolution {Fi}∞i=1 of K we have aanonial isomorphism

H∗(F∗ ⊗Z[G] Z) ∼= H∗(G, H).That is, H∗(G, H) = TorZ[G]
∗ (K, Z).Proof. It is enough to prove the existene of a free G�resolution of K for whihthe isomorphism holds. Let B∗(H) and B∗(G) be as in (2.1) and let i∗ denote themap indued by inlusion. By the standard one onstrution (see e.g. Chapter 4.2in Spanier [15℄), the redued homology of Cof(i) is the homology of the omplex

Di = Bi−1(H) ⊕ Bi(G), with boundary map given by the matrix ( ∂ 0
i∗ −∂

). De�nea omplex Fi of free G�modules by
Fi = Di ⊗Z Z[G], for i ≥ 2

F1 = Ker(D1 → D0) ⊗Z Z[G] = B1(G) ⊗Z Z[G] = C1(G).Note that Hi(F∗ ⊗Z[G] Z) = Hi(D∗) for all i ≥ 1. The theorem will now follow ifwe an prove that the map F2 → F1 has okernel isomorphi to K.De�ne a map ρ : F1 → C0(G/H) as the omposition
F1 = C1(G)

∂
// C0(G)

π
// C0(G/H),where π is indued by projetion onto osets. It is now simple to hek that ρmaps surjetively onto K with kernel equal to the image of F2. This proves thetheorem. �The omplex C∗(G) an be regarded as being generated by simplies with a

G�labeling of verties. Also, B∗(G) an be regarded as being generated by sim-plies with a G�labeling of edges. See e.g. Chapter IV in Ma Lane [8℄ for moreexplanation. Similar to this, relative homology an be omputed using omplexesof trunated simplies with labelings. This will be explored in the next setion.



8 CHRISTIAN K. ZICKERT3. The omplex of trunated simpliesLet G = PSL(2, C) and let P be the image in G of the group of upper triangularmatries with 1 on the diagonal. Note that P is isomorphi to C. We now onstrutan expliit omplex omputing the relative homology groups H∗(G, P ).Let ∆ be an n�simplex with a vertex ordering given by assoiating an integer
i ∈ {0, . . . , n} to eah vertex. Let ∆̄ denote the orresponding trunated simplexobtained by hopping o� disjoint regular neighborhoods of the verties. Eah vertexof ∆̄ is naturally assoiated with an ordered pair ij of distint integers. Namely,the ij�th vertex of ∆̄ is the vertex near the i�th vertex of ∆ and on the edge goingto the j�th vertex of ∆.De�nition 3.1. Let C̄n(G, P ), n ≥ 1, be the free abelian group generated by
G�labelings {gij} of verties of trunated n�simplies satisfying(i) For �xed i the verties ij are labeled by distint elements in G mapping tothe same left P�oset.(ii) The elements gij = (gij)−1gji are ounter diagonal, i.e. of the form (

0 −a−1

a 0

).Left multipliation endows C̄n(G, P ) with a G�module struture and the usualboundary map indues a boundary map on C̄∗(G, P ) making it into a hain omplex.Remark 3.2. We will prove later that C̄∗(G, P ) ⊗Z[G] Z omputes the relative ho-mology groups H∗(G, P ). For this to hold, property (ii) of De�nition 3.1 is notrequired. Nor is distintness in Property (i). In fat, we an de�ne C̄∗(G, H) foran arbitrary group G and an arbitrary subgroup H exatly as in De�nition 3.1but without Property (ii) and without distintness in Property (i). The equality
H∗(G, H) = H∗(C̄∗(G, H) ⊗Z[G] Z) will still hold. The reason for adding the extraproperties is that we will be able to interpret a generator as an ideal simplex whihis naturally �attened. This will be explained in the next setion.Note that C̄n(G, P ) is a free G�module, and that we an represent a generator bya trunated simplex together with a labeling of eah oriented edge, suh that an edgegoing from vertex ij to vertex kl is labeled by (gij)−1gkl. We denote the labeling ofan edge going from vertex i to j in the untrunated simplex by gij , and the labelingof the edges near the k�th vertex by αk

ij , see Figure 2. We all these edges thelong edges and the short edges, respetively. By properties (i) and (ii) of De�nition3.1, the αk
ij 's are non-trivial elements in P and the gij 's are ounter diagonal.Furthermore, the edge labelings are fored to satisfy that the produt of labelingsalong any two-fae (inluding the triangles) is 1. We denote the omplex generatedby suh G�labelings B̄∗(G, P ). By de�nition we have B̄∗(G, P ) = C̄∗(G, P )⊗Z[G] Z.In the following we will often regard the labelings of short edges as omplexnumbers using the anonial identi�ation of a matrix ( 1 x

0 1 ) ∈ P with the omplexnumber x ∈ C. The matrix orresponding to x will be denoted (x).Note that the labelings of the short edges (regarded as omplex numbers) satisfy(3.1) αi
jk = −αi

kj ,

αi
jk + αi

kl + αi
lj = 0.Lemma 3.3. Let α ∈ B̄n(G, P ) be a generator. For any i, j, k, l the labelings ofthe short edges (regarded as omplex numbers) satisfy(3.2) αi

kjα
j
ik = αi

ljα
j
il.
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0

1

2

3

g02

g03g01

g10 g12

g13

g20

g21 g23

g30

g31

g32

(a) A generator of C̄3(G, P ). 0

1

2

3

g20

g01 g12 g23

g31

g03

α0
21

α0
31

α0
32

α1
02

α1
32

α1
03

α2
10

α2
13

α2
03

α3
10

α3
20

α3
21

(b) A generator of B̄3(G, P ).Figure 2: Generators in the trunated omplexes. In (b), theprodut of labelings around eah two-fae is 1. For the front fae,this implies that g01α
1

02g12α
2

10g20α
0

21 = 1. Reversing an arroworresponds to replaing the appropriate label by its inverse.Moreover, if αi
jk 6= 0 are labelings of the short edges of a trunated n�simplexsatisfying (3.2) and (3.1), there is a unique way of labeling the long edges to obtaina generator of B̄n(G, P ).Proof. Consider the two-fae of α de�ned by the verties i, j and k. For notationalsimpliity, assume that the labelings of the edges are given by
gij =

(
0 −a−1

a 0

)
, gjk =

(
0 −b−1

b 0

)
, gki =

(
0 −c−1

c 0

)
,

(
αj

ik

)
=
(

1 p
0 1

)
,
(
αk

ji

)
=
(

1 q
0 1

)
,
(
αi

kj

)
= ( 1 r

0 1 ) .A simple alulation shows that
gij

(
αj

ik)gjk

(
αk

ji)gki

(
αi

kj) =

(
−bc

a
q −b

ac
(c2qr−1)

ac

b
(b2pq−1) a

bc

(
(b2pq−1)c2r−b2p

)
)

,whih is easily seen to be 1 ∈ PSL(2, C) if and only if(3.3) a−2 = rp = αi
kjα

j
ik, b−2 = pq = αj

ikαk
ji, c−2 = qr = αk

jiα
i
kj .Sine a only depends on i and j, the �rst statement follows. Given labelings ofthe short edges, we an use (3.3) to de�ne the labelings of the long edges. This isonsistent sine the αk

ij 's satisfy (3.2). �Remark 3.4. It follows from equation (3.3) that the square root de�ned by ourhoie of logarithm branh gives us partiular representatives of the gij 's in SL(2, C)satisfying gij = gji. In the following we shall thus always regard the gij 's as elementsin SL(2, C). Note, however, that the produt along hexagonal faes may now be
−1 instead of 1 in SL(2, C).We onlude the setion with a proof that B̄∗(G, P ) omputes the relative ho-mology groups H∗(G, P ).Lemma 3.5. Let gP and hP be P�osets, satisfying that gB 6= hB, where B =
{
(

λ z
0 λ−1

)
∈ PSL(2, C)}. There exist unique oset representatives gx and hy satis-fying that (gx)−1hy is ounter diagonal.



10 CHRISTIAN K. ZICKERTProof. Let g−1h =
(

a b
c d

) and let x =
(

1 p
0 1

) and y =
(

1 q
0 1

). We have
x−1g−1hy =

(
a−cp aq+b−p(cq+d)

c cq+d

)
.Sine gB 6= hB, it follows that c is non-zero. This implies that there exist uniqueomplex numbers p and q suh that the above matrix is ounter diagonal. Theelements gx and hy are easily seen to be independent of the representatives gand h. �Corollary 3.6. An (n+1)�tuple of left P�osets that are distint as osets of Buniquely determines a generator of C̄n(G, P ).Proposition 3.7. Let K be the kernel of the augmentation map C0(G/P ) → Z.The omplex C̄∗(G, P ) gives a free G�resolution of K.Proof. We have already seen that C̄∗(G, P ) is a omplex of free modules. To proveexatness we use a standard one argument: Given a generator α ∈ C̄n(G, P ), wewish to de�ne a �one� S(α) ∈ C̄n+1(G, P ). Let hiP be the oset determined byvertex i of α and let gP be a oset satisfying that gB 6= hiB for all i. The onewill depend on this hoie of oset. Let ∆̄n+1 be a trunated (n + 1)�simplex. For

i, j 6= 0 de�ne the labeling of vertex ij to be the labeling of vertex (i − 1)(j − 1)of α. The remaining verties an be labeled using Lemma 3.5 above. Namely, welabel vertex 0i by gxi and vertex i0 by hi−1yi, where xi and yi are de�ned as inLemma 3.5. This �nishes the de�nition of S(α). We an similarly de�ne a one onany hain β ∈ C̄n(G, P ) as long as gB is distint from the B�osets determined bythe summands. Sine G/B is in�nite we an always �nd suh a oset. It followsdiretly from the onstrution that
∂(S(β)) − S(∂(β)) = β.This shows that every yle is a boundary. The only thing left to prove is that themap ∂2 : C̄2(G, P ) → C̄1(G, P ) has okernel isomorphi to K. Let π : C̄1(G, P ) →

C0(G/P ) be the map indued by ∂1. It is trivial to see that π has image in K andmaps the image of ∂2 to 0. We need to prove that eah hain in the kernel of π liesin the image of ∂2. For a generator α ∈ C̄1(G, P ) we write ∂1(α) = α1 − α0, with
αi generators of C0(G). Sine the omplex C∗(G/P ) is ayli, we an write anyhain in the kernel of π as a sum of hains of the form α0 −α1 + α2 satisfying that
α1

i and α0
i+1 (indies modulo 3) are in the same P�oset. De�ne gij by the formula(indies modulo 3)

∂αi = α1
i − α0

i = gi+2,i+1 − gi+1,i+2,and let these be the labelings of a generator τ ∈ C̄2(G, P ). It is now a simplematter to hek that ∂2τ = α0 − α1 + α2. This onludes the proof. �Corollary 3.8. We have an isomorphism
H∗(B̄∗(G, P )) = H∗(G, P ).Proof. This follows immediately from Theorem 2.1. �



THE COMPLEX VOLUME OF A REPRESENTATION 113.1. Deorations and �attenings. In this setion we disuss some of the un-derlying geometry behind the omplex of trunated simplies. We shall see thatevery generator of B̄3(G, P ) an be regarded as an ideal simplex together with adeoration whih endows the ideal simplex with a natural �attening. This will beused to de�ne a map Ψ: H3(G, P ) → B̂(C).Reall that G ats on H3, whih we identify with upper half spae. The subgroup
P �xes ∞ ∈ H̄3 and ats by translations on any horosphere at ∞. We endow ahorosphere at ∞ with the ounterlokwise orientation as viewed from ∞. Usingthe ation of G, this indues an orientation on all horospheres.De�nition 3.9. A horosphere together with a hoie of orientation preservingisometry to C is alled a eulidean horosphere. We onsider two eulidean horo-spheres based at the same point equal if the isometries di�er by a translation. Welet G at on the set of eulidean horospheres in the obvious way.Remark 3.10. The ation of G on the set of eulidean horospheres is transitivewith stabilizer P . Hene, the set of eulidean horospheres an be identi�ed withthe set of left P -osets. This identi�ation is �xed one we have piked a refereneeulidean horosphere. A natural hoie for suh is the plane (horosphere at ∞) atheight 1 over the x�y plane (identi�ed with C) with the eulidean struture induedby projetion. For future referene we will denote this by H(∞).De�nition 3.11. A hoie of eulidean horosphere at eah vertex of an ideal sim-plex is alled a deoration of the simplex. Having �xed a deoration, we say thatthe ideal simplex is deorated. Two deorated ideal simplies are alled ongruentif they di�er by an element in G.A horosphere based at one of the ideal verties of an ideal simplex intersets thesimplex in an oriented eulidean triangle, whih we will refer to as an intersetiontriangle. A deoration enables us to view the intersetion triangles as expliit trian-gles in C. The assoiation of ross-ratio parameters to the edges of an ideal simplex(see Figure 1) assoiates ross-ratio parameters to the verties of the intersetiontriangles as shown in Figure 3.

z

z′

z′′

e2

e1

e0

Figure 3: An intersetion triangle of an ideal simplex. The ross-ratio parameter at a vertex indiates the relationship betweenthe two outgoing edges. Regarding the oriented edges as om-plex numbers, we have e1 = ze2, e0 = −z
′−1

e2 and e0 = z
′′
e1.The ordering of the edges is the one indued from the vertexordering of the ideal simplex.We wish to show that there is a one-to-one orrespondene between generators of

B̄3(G, P ) and ongruene lasses of deorated ideal simplies. Let {gij} be vertex



12 CHRISTIAN K. ZICKERTlabelings of a generator in C̄3(G, P ) orresponding to an inhomogeneous generator
α ∈ B̄3(G, P ). De�ne ideal verties vi ∈ C∪{∞} by vi = gij∞. This is independentof j by property (i) of De�nition 3.1. The vi's determine an ideal simplex ∆, whihup to ongruene only depends on α. Sine the produt of edge labelings of αalong eah ut-o� triangle is 1, the identi�ation of P with C gives eah ut-o�triangle the geometri shape of a eulidean triangle determined up to translation.We wish to prove that the ut-o� triangles orrespond to intersetion triangles of adeoration of ∆. A neessary ondition for this to hold is that the ut-o� trianglessatisfy the same geometri properties as the geometri properties of the intersetiontriangles desribed above.Lemma 3.12. Let α ∈ B̄3(G, P ) be a generator and let z denote the ross-ratioof the assoiated ideal simplex ∆. The labelings satisfy the following relations. Inpartiular, the ut-o� triangles are similar.

z = α0
12/α0

13 = α1
03/α1

02 = α2
30/α2

31 = α3
21/α3

20

z′ = α0
13/α0

23 = α3
02/α3

01 = α1
20/α1

23 = α2
31/α2

01

z′′ = α0
32/α0

12 = α2
01/α2

03 = α1
23/α1

03 = α3
10/α3

12

(3.4)Proof. We only need to prove the �rst equation. The other two are trivial on-sequenes. Reall that the verties of ∆ are given by a hoie of homogeneousrepresentative of α in C̄3(G, P ). Using the unique representative with g01 = 1 in
PSL(2, C), we obtain that the ideal verties are v0 = ∞, v1 = g01∞, v2 = (α0

12)g02∞and v3 = (α0
13)g03∞, and omputing the ross-ratio yields

[∞, g01∞, (α0
12)g02∞, (α0

13)g03∞] = [∞, 0, α0
12, α

0
13] = α0

12/α0
13 = z.Doing the same for the representative with g23 = 1 gives verties v0 = α2

30, v1 = α2
31,

v2 = ∞, v3 = 0 and ross-ratio α2
30/α2

31. This proves the �rst and third equality.The seond and fourth equality follow diretly from (3.2). �Theorem 3.13. Generators of B̄3(G, P ) are in one-one orrespondene with on-gruene lasses of deorated ideal simplies.Proof. We have already seen that the deoration of a deorated ideal simplex en-dows eah intersetion triangle with the shape of a triangle in C whih is determinedup to translation. Using the identi�ation of omplex numbers with elements in P ,this determines labelings of the small edges in a trunated simplex. Note that theselabelings only depend on the ongruene lass of the deorated simplex. Using thegeometry of the intersetion triangles desribed in Figure 3, we see that the label-ings satisfy (3.4). Sine (3.4) obviously implies (3.2) it follows from Lemma 3.3 thatthe labelings de�ne a unique generator of B̄3(G, P ). Now let α ∈ B̄3(G, P ) be a gen-erator and let ∆ be the assoiated ideal simplex. Sine the ut-o� triangles satisfy(3.4), there is a unique way of piking eulidean horospheres at the ideal vertiesof ∆ suh that the intersetion triangles oinide with the ut-o� triangles. �Remark 3.14. Theorem 3.13 also follows from Remark 3.10 and Corollary 3.6. Notethat if we identify the eulidean horosphere at a vertex of a deorated ideal simplexwith a oset gP , then g−1 takes the intersetion triangle to a triangle in H(∞)whose projetion onto C equals (up to translation) the expliit triangle given bythe deoration.



THE COMPLEX VOLUME OF A REPRESENTATION 13As we shall see below, a deorated ideal simplex is naturally equipped with a�attening. For a matrix g =
(

a b
c d

) we let c(g) denote the entry c.Lemma 3.15. Let α be a generator of B̄3(G, P ), and let z denote the ross-ratioof α regarded as an ideal simplex. Note that for eah of the long edges, c(gij) iswell de�ned by Remark 3.4 and is non-zero. We have(3.5) c(g03)c(g12)

c(g02)c(g13)
= ±z,

c(g13)c(g02)

c(g01)c(g23)
= ± 1

1 − z
,

c(g01)c(g23)

c(g03)c(g12)
= ±(1 − 1

z
).Proof. From (3.3), we have that c(gij)

2 = (αi
kjα

j
ik)−1 = (αi

ljα
j
il)

−1 and using (3.4)one easily heks that
c(g03)

2c(g12)
2

c(g02)2c(g13)2
= z2,from whih the �rst equality follows. The other equalities are proved similarly. �Remark 3.16. One an prove that the signs in (3.5) are (+, +,−) if and only ifthe produt of labelings around hexagonal faes is onstant. By Remark 3.4 thisonstant is either 1, in whih ase α is in B̄3(SL(2, C), P ), or −1, in whih ase

−α is in B̄3(SL(2, C), P ). Here −α denotes the labeled trunated simplex obtainedfrom α by hanging the signs of all the labelings of long edges. We will need thisin Setion 7 where we disuss SL(2, C)�representations and their relations to even�attenings.It now follows from Lemma 3.15 that we an de�ne a �attening of ∆ by de�ninglog-parameters
w0(α) = Log c(g03) + Log c(g12) − Log c(g02) − Log c(g13),

w1(α) = Log c(g02) + Log c(g13) − Log c(g01) − Log c(g23),

w2(α) = Log c(g01) + Log c(g23) − Log c(g03) − Log c(g12).

(3.6)Note that sine c(gij) = c(gji), the log-parameters above are a sum of logarithmsof omplex numbers assoiated to the unoriented edges of ∆. We will refer to themas Log(c)�parameters.Consider the map(3.7) Ψ: B̄3(G, P ) → P̂(C), α 7→ (w0(α), w1(α), w2(α)).Theorem 3.17. The map Ψ de�ned above sends boundaries to 0 and yles to
B̂(C), and we therefore obtain an indued map(3.8) Ψ: H3(G, P ) → B̂(C).Proof. This follows as in Setion 3.1 in Dupont�Zikert [4℄. Let α ∈ B̄4(G, P ) bea generator, and let αi denote the �ve generators of B̄3(G, P ) obtained from α bydeleting the i�th vertex. We have

∂α =
∑

(−1)iαi.Let (wi
0, w

i
1, w

i
2) be the �attening of the simplex orresponding to αi as de�ned by(3.6). We have that Ψ(∂α) = 0 if and only if the �attenings (wi

0, w
i
1, w

i
2) satisfy the



14 CHRISTIAN K. ZICKERT�attening ondition, whih is equivalent to satisfying the ten equations (1.5). Weverify the �rst of these and leave the others to the reader. We have
w2

0 = Log c(g04) + Log c(g13) − Log c(g03) − Log c(g14)

w3
0 = Log c(g04) + Log c(g12) − Log c(g02) − Log c(g14)

w4
0 = Log c(g03) + Log c(g12) − Log c(g02) − Log c(g13),from whih it follows that the equation w2

0 − w3
0 + w4

0 = 0 is satis�ed. Havingveri�ed all the ten equations of (1.5), we have proved that Ψ sends boundaries tozero. To prove that Ψ sends yles to B̂(C) de�ne a map µ : B̄2(G, P ) → C∧Z C by(3.9) α 7→ Log c(g01) ∧ Log c(g02)

− Log c(g01) ∧ Log c(g12) + Log c(g02) ∧ Log c(g12).Letting Z[Ĉ] be the free abelian group on the set of �attenings, a straightforwardalulation shows that the diagram below is ommutative.(3.10) B̄3(G, P )

∂

��

Ψ
// Z[Ĉ]

bν

��

B̄2(G, P )
µ

// C ∧Z CThis means that yles are mapped to B̂(C) as desired. �Remark 3.18. The reader may argue that Ψ depends on the hoie of logarithmused to de�ne the �attenings. This is not the ase, see Remark 6.11.The omposition L̂ ◦ Ψ: H3(G, P ) → C/π2Z, where L̂ is given by (1.6), an beviewed as a relative Cheeger�Chern�Simons lass. The fat that it agrees with ĉ2on H3(G) will be proved in Setion 6.4. Boundary-paraboli representationsIn this setion we de�ne the notion of a boundary-paraboli representation of atame manifold and onstrut a developing map of suh. In the following we assumethat all manifolds are smooth and oriented.De�nition 4.1. A tame manifold is a manifold M di�eomorphi to the interiorof a ompat manifold M̄ . The boundary omponents of M̄ are alled the ends of
M . We allow the number of ends to be zero so that a losed manifold is a tamemanifold with no ends.To avoid onfusing readers familiar with existing terminology, we stress that anend is a boundary omponent of M̄ and not a losed regular neighborhood of aboundary omponent as many other authors de�ne it.Let M be a tame manifold. By the ollar neighborhood theorem, we an regard
M̄ as a retrat of M , and we therefore have a anonial identi�ation of π1(M)with π1(M̄). Eah of the ends of M de�nes a subgroup of π1(M), whih is wellde�ned up to onjugation. We all these the peripheral subgroups of M . We neitherrequire that the ends are inompressible nor that the genus is greater than zero, sothe peripheral subgroups may be trivial.



THE COMPLEX VOLUME OF A REPRESENTATION 15De�nition 4.2. An element of G is alled paraboli if it �xes exatly one point in
∂H̄3. A subgroup of G is alled paraboli if all its element are paraboli �xing aommon point in ∂H̄3.It is easy to see that any paraboli subgroup is onjugate to a subgroup of P .De�nition 4.3. A representation ρ : π1(M) → PSL(2, C) is alled boundary-paraboliif ρ maps eah peripheral subgroup to a paraboli subgroup. An end is alled trivialwith respet to ρ if its orresponding paraboli subgroup is trivial. If ρ is lear fromthe ontext we will just all the end trivial.Example 4.4. The geometri representation of a hyperboli 3�manifold is boundary-paraboli. It is de�ned up to onjugation. All the ends are non-trivial tori.Example 4.5. Reall that any hyperboli manifold M is isometri to H3/Γ, where
Γ is a disrete subgroup of PSL(2, C). The trae �eld Q(trΓ) of M is the sub�eld of
C generated over Q by the traes of the elements of Γ. The trae �eld is a number�eld, and if M is non-ompat, the geometri representation of M is onjugate to arepresentation into PSL(2, Q(trΓ)). If n is the degree of Q(trΓ), there are exatly
n embeddings of Q(trΓ) in C. Composing the geometri representation with themap PSL(2, Q(trΓ)) → PSL(2, C) indued by one of these embeddings gives arepresentation whih is alled a Galois onjugate of ρ. All Galois onjugates of thegeometri representation are boundary-paraboli. We refer to Reid-Malahlan [9℄for more details on trae �elds.Remark 4.6. Suppose M has a single end whih is a torus. In this ase, the setof onjugation lasses of (irreduible) boundary-paraboli representations is often�nite. For example, if all omponents of the PSL(2, C)�harater variety are onedimensional, the haraters of boundary-paraboli representations are given by the�nite set I−1

m (4), where m denotes a meridian, and Iλ, for λ ∈ π1(M), is the regularfuntion taking ρ to (tr ρ(λ))2. In Cooper et al. [3℄, the authors prove that allomponents of the SL(2, C)�harater variety are one dimensional if M ontainsno losed inompressible surfae. The dimension of the PSL(2, C)�harater va-riety is in general bigger than the SL(2, C) analog, but if M is irreduible and if
H1(M ; Z/2Z) = Z/2Z (e.g. if M is a knot omplement), the dimensions are thesame, see Boyer�Zhang [1℄.Remark 4.7. If M is a hyperboli twist knot, it follows from Hoste�Shanahan [7℄that every boundary-paraboli representation, whih is not onjugate to a repre-sentation in P , is a Galois onjugate of the geometri representation.4.1. The developing map of a representation. Let M be a tame manifoldand let M̂ be the ompati�ation of M obtained by ollapsing eah boundaryomponent of M̄ to a point. We shall refer to points in M̂ orresponding to theends as ideal points of M . Similarly, we let ˆ̃M denote the ompati�ation of theuniversal over of M̄ obtained by adding ideal points orresponding to the lifts ofthe ends of M . The overing map extends to a map from ˆ̃M to M̂ . In the followingwe assume that a base point in M and one of its lifts has been �xed one andfor all. With the base points �xed we have an ation of π1(M) on M̃ by overingtransformations, whih extends to an ation on ˆ̃M . This ation is no longer free.The stabilizer of a lift ẽ of an ideal point e orresponding to an end E is isomorphi



16 CHRISTIAN K. ZICKERTto an end subgroup π1(E). Changing the lift ẽ orresponds to hanging the endsubgroup by a onjugation.De�nition 4.8. A triangulation of a tame manifold M is an identi�ation of M̂with a omplex obtained by gluing together simplies with simpliial attahingmaps. We do not require that the triangulation is simpliial but we do require thatopen simplies embed.A triangulation of M always exists. It lifts uniquely to a triangulation of M̃ ,and it indues a triangulation of eah end of M as the link of the orrespondingideal point.Lemma 4.9. Let ∆ be an n�simplex in Rn with an ordering of the verties. Givenany ideal n�simplex ∆′ ∈ Hn with a vertex ordering, there exists a unique homeo-morphism from ∆ to ∆′ that restrits to an order preserving map of verties, andtakes eulidean straight lines to hyperboli straight lines.Proof. The existene of suh a homeomorphism is obvious if we work in the Kleinmodel of hyperboli spae, where the hyperboli straight lines and the eulideanstraight lines oinide. The uniqueness follows from the fat that any loal home-omorphism between open subsets of Rn preserving straight lines is a�ne. �We all a homeomorphism as in Lemma 4.9 an ideal homeomorphism.De�nition 4.10. Let M be a triangulated tame 3�manifold and let ρ be a boundary-paraboli representation. A developing map of ρ is a ρ�equivariant map(4.1) Dρ : ˆ̃M → H̄3sending all zero-ells to ∂H̄3 and satisfying that the omposition of Dρ with theharateristi map of a ell is an ideal homeomorphism onto a non-degenerate idealsimplex. Two developing maps are alled equivalent if they agree on the ideal pointsorresponding to lifts of non-trivial ends.Note that if D is a developing map of ρ, then gD is a developing map of gρg−1.Theorem 4.11. If the triangulation of M is su�iently �ne, a developing mapalways exists, and it is unique up to equivalene. A single baryentri subdivision isenough to ensure that any boundary-paraboli representation (inluding the trivialrepresentation) admits a developing map.Proof. Our onstrution follows that of Setion 8 of Neumann�Yang [13℄. A de-veloping map is uniquely determined by its value on the zero-ells, of whih thereare three di�erent types to onsider: ideal points orresponding to non-trivial ends,ideal points orresponding to trivial ends, and interior zero-ells.Let e denote an ideal point of M orresponding to a non-trivial end and let
ẽi denote the lifts of e. As desribed above, eah of the ẽi's de�nes a peripheralsubgroup. The ρ�image of the peripheral subgroup of ẽi is a paraboli subgroup Piwith a unique �xed point vi ∈ ∂H̄3. De�ne(4.2) Dρ(ẽi) = vi.Note that Dρ(αẽi) = ρ(α)vi for every i and every α ∈ π1(M). We de�ne Dρ on therest of the zero-skeleton by letting lifts of trivial ends and interior zero-ells mapequivariantly to arbitrary points in ∂H̄3 requiring that zero-ells in the losure of a
3�ell map to distint points. Sine we don't allow degenerate simplies, we might



THE COMPLEX VOLUME OF A REPRESENTATION 17need to subdivide the triangulation to get a well de�ned developing map. This isthe ase e.g. if two peripheral subgroups map to the same paraboli subgroup. It islear that a single baryentri subdivision is enough to ensure non-degeneray. Theuniqueness statement follows from the fat that ρ�equivariane fores the image oflifts of non-trivial ideal points to be as in (4.2). �Remark 4.12. Given a triangulation, the fundamental group is generated by faepairings, and a boundary-paraboli representation is given by an assoiation of anelement in PSL(2, C) to eah suh fae pairing satisfying the relevant relations.Given this data, the proess of developing a boundary-paraboli representation isompletely algorithmi and works very fast even for a high number of simplies.Sine a developing map of ρ is ρ�equivariant, it endows eah simplex in thetriangulation of M with the shape of an ideal simplex, and it thus allows us tothink of M as a spae obtained by gluing together ideal simplies. If M is ahyperboli 3�manifold and ρ is the geometri representation, a developing mapprovides a degree one ideal triangulation of M in the sense of Neumann�Yang [13℄.In the next setion we will de�ne a fundamental lass of ρ. To obtain this wewill need that eah of the ideal simplies are deorated, that is, we need to hooseeulidean horospheres at eah of the ideal verties.De�nition 4.13. Let ρ be a boundary-paraboli representation of a tame, trian-gulated 3�manifold M , and let D denote a developing map of ρ. Let x ∈ M̂ be azero-ell. For eah lift x̃ ∈ ˆ̃M of x let H(D(x̃)) be a eulidean horosphere basedat D(x̃). The olletion {H(D(x̃))}x̃∈π−1(x) of eulidean horospheres is alled adeoration of x if the following equivariane ondition is satis�ed:(4.3) H(D(αx̃)) = ρ(α)H(D(x̃)), for α ∈ π1(M), x̃ ∈ π−1(x)De�nition 4.14. Let M and ρ be as above. A developing map of ρ together witha hoie of deoration of eah zero-ell of M is alled a deoration of ρ. If we havepiked a deoration we say that ρ is deorated. We onsider two deorations to beequivalent if they agree on non-trivial ideal points.Note that a deorated representation endows eah simplex of M̂ with the stru-ture of a deorated ideal simplex determined up to ongruene.5. The fundamental lass of a representationIn this setion we show that the notion of deoration from De�nition 4.14 extendsto the more general setup of (G, H)�representations. We show that a deorated
(G, H)�representation determines a fundamental lass in H∗(G, H), and we desribea partiularly simple way of onstruting this lass in the speial ase of boundary-paraboli representations. The general theory seems interesting in itself, and wedevelop it in detail. All manifolds are assumed to be smooth and oriented, but notneessarily of dimension 3.De�nition 5.1. Let M be a tame manifold and let H be a subgroup of G, where
G is any (disrete) group. A representation ρ : π1(M) → G is alled a (G, H)�representation if ρ sends peripheral subgroups to onjugates of subgroups of H .



18 CHRISTIAN K. ZICKERT5.1. De�nition of the fundamental lass. We start with the ase where M islosed and H is the trivial subgroup. In this ase a (G, H)�representation is just arepresentation. Reall that onjugation lasses of representations of π1(M) are inone-one orrespondene with homotopy lasses of lassifying maps M → BG.De�nition 5.2. Let ρ : π1(M) → G be a representation and let f denote its las-sifying map. The fundamental lass of ρ is the lass f∗[M ], where [M ] is thefundamental lass of M .Suppose that M is triangulated. As mentioned in Setion 2 a generator of B∗(G)an be regarded as a simplex with a G�labeling of edges. We an therefore produeyles in B∗(G) by labeling the edges of M in an appropriate fashion. The de�nitionbelow is taken from Neumann [12℄.De�nition 5.3. Let M be a triangulated manifold. Let Sq(M) be the set oforiented q�ells of M . A G�oyle on M is a map σ : S1(M) → G satisfying theproperties:(i) σ〈v0, v2〉 = σ〈v0, v1〉σ〈v1, v2〉 for 〈v0, v1, v2〉 ∈ S2(M).(ii) σ〈v1, v0〉 = σ〈v0, v1〉−1.If τ : S0(M) → G is a 0�ohain, then its oboundary ation on G�oyles is toreplae σ by(5.1) 〈v0, v1〉 7→ τ(v0)
−1σ〈v0, v1〉τ(v1).A G�oyle σ gives rise to a representation ρ : π1(M) → G whih is well de�nedone we have hosen a zero-ell as a base point. We say that σ represents ρ. Givena representation we an always �nd a oyle representing it, e.g. by de�ning theoyle to be the identity on edges of a maximal tree. A representing oyle isunique up to the ation by oboundaries. From this the proposition below easilyfollows. It does not require that M be losed.Proposition 5.4. There is a one-one orrespondene between G�oyles up to theation by oboundaries, and homotopy lasses of lassifying maps M → BG.To obtain a yle in B∗(G) from a G�oyle, we need that eah simplex in thetriangulation of M has a vertex ordering whih is respeted by the fae identi�a-tions.De�nition 5.5. An ordering of a triangulated tame manifold M is an ordering ofthe verties of eah simplex satisfying that the orientation of edges indued by theordering agrees under the identi�ation of faes. Having �xed an ordering we saythat M is ordered.Remark 5.6. Not every triangulation has an ordering, but after performing a singlebaryentri subdivision, we have a natural ordering by odimension. Namely, the

i�th vertex of a simplex is the unique vertex lying in a fae of odimension i in theoriginal simplex.Proposition 5.7. Let M be a losed, ordered, triangulated n�manifold with a rep-resentation ρ : π1(M) → G. Let σ be a G�oyle representing ρ and let ∆i be thesimplies of M endowed with the G�labeling of oriented edges indued by σ. Let ǫibe a sign indiating whether or not the orientation of ∆i indued by the orderingagrees with the orientation it inherits from M . The yle(5.2) ∑
ǫi∆i ∈ Bn(G)



THE COMPLEX VOLUME OF A REPRESENTATION 19represents the fundamental lass.Proof. The proof is an appliation of the Milnor onstrution of BG, whih wereall below. Let ∆n = {(t0, . . . , tn) ∈ Rn+1 |∑i ti = 1} be the standard simplexand let ∂i denote the map ∆n−1 → ∆n inserting a zero on the i�th oordinate. Wehave(5.3) BG =

(
∞⊔

n=1

∆n × Gn

)/
∼where the relation is generated by (∂it, x) ∼ (t, dix), with

di(g1, . . . gn) =






(g2, . . . , gn) for i = 0

(g1, . . . , gigi+1, . . . , gn) for 0 < i < n

(g1, . . . , gn−1) for i = n

.Note that the set Gn parametrizes the set of G�oyles on ∆n. Namely, a tuple
(g1, . . . , gn) orresponds to the unique oyle sending the edge [ei−1, ei] to gi,where ei is the i�th standard basis vetor. This means that an ordered simplexwith a G�oyle is naturally equipped with a map to BG. The oyle σ induesa G�oyle of eah simplex of M , and sine M is ordered, the maps to BG respetthe fae pairings, and thus indue a map from M to BG. By onstrution, theindued map on π1 is ρ, so it is a lassifying map. Using the anonial isomorphismbetween the ellular omplex of BG with the omplex B∗(G), it follows that thefundamental lass has the given representation. �We now return to the general ase of a (G, H)�representation of a tame manifold.Reall that a triangulation of M indues a triangulation of ∂M̄ . It also indues a elldeomposition of M̄ using hybrids of trunated simplies and normal simplies. Asimplex of M with verties onsisting entirely of ideal points gives rise to a trunatedsimplex, and a simplex of M onsisting entirely of interior points gives rise to anormal simplex. The notion of a G�oyle extends to suh ell deompositions inthe obvious way.De�nition 5.8. A (G, H)�oyle is a G�oyle on M̄ sending edges of ∂M̄ to
H . A 0�ohain sending verties of ∂M̄ to H ats on a (G, H)�oyle as in (5.1).Proposition 5.9. There is a one-one orrespondene between (G, H)�oyles upto the ation by oboundaries, and homotopy ommuting diagrams(5.4) ∂M̄

��

// BH

��

M̄ // BG.Proof. Using the Milnor onstrution of BG we see that a (G, H)�oyle induesa diagram as above. Now suppose we have a diagram as above. Let f denote themap from M̄ to BG, and let σ be a G�oyle representing f . Sine the restritionof f to ∂M̄ is homotopy equivalent to a map into BH , Proposition 5.4 implies thatthe restrition of σ to ∂M̄ an be modi�ed by oboundaries to send edges of ∂M̄ to
H . The (G, H)�oyle thus produed is unique up to the ation by oboundaries,and the indued map is homotopy equivalent to f . �



20 CHRISTIAN K. ZICKERTWe an now de�ne the fundamental lass of a (G, H)�oyle as the image ofthe fundamental lass [M̄, ∂M̄ ] under the orresponding map (5.4).Let M̄ ′ be the manifold obtained from M̄ by removing small disjoint open ballsaround eah interior zero-ell. Note that the triangulation of M indues a elldeomposition of M̄ ′ onsisting entirely of trunated simplies. If M has dimen-sion n ≥ 3, it follows from Proposition 5.9 that there is a one-one orrespondenebetween oyles on M̄ and oyles on M̄ ′ (modulo oboundaries), and that or-responding oyles indues the same fundamental lass. We have the followinggeneralization of Proposition 5.7.Proposition 5.10. Let M be an ordered, triangulated manifold of dimension n ≥ 3,and let τ be a (G, H)�oyle on M̄ ′. The fundamental lass is represented in
B̄n(G, H) by the yle

∑
ǫi∆̄i,where ∆̄i are the trunated simplies in the triangulation of M̄ ′ with edge labelingsgiven by τ , and ǫi is a sign indiating whether or not the orientation of ∆̄i givenby the ordering agrees with the orientation indued from M̄ ′.Proof. The proof is similar to the proof of Proposition 5.7. We give a sketh andleave the details to the reader. Let T n be a set parametrizing the set of (G, H)�oyles of a trunated n�simplex. Consider the spae

B(G, H) =

(
∞⊔

n=1

∆̄n × T n

)/
∼where the relation is the trunated analog of the relation in (5.3). The map from

Gn to T n obtained by labeling all short edges by 1 indues a map from BG to
B(G, H), whose restrition to BH an be seen to be null homotopi. By theuniversal property of the homotopy o�ber, B(G, H) is a model for the o�ber of
BH → BG. The homology of B(G, H) is equal to the homology of B̄∗(G, H), andthe fundamental lass is easily seen to have a representation as in the proposition.

�5.2. The (G, H) oyle. We will now desribe how to assoiate a (G, H)�oyleto a (G, H)�representation ρ. By Proposition 5.9 this de�nes a fundamental lass.The oyle, and therefore also the fundamental lass, will depend on a hoie ofdeoration whih we de�ne below.Let ei denote the ideal points orresponding to the non-trivial ends Ei of M ,and hoose lifts ẽi ∈ ˆ̃M of ei. As in Setion 4.1 this de�nes peripheral subgroups
π1(Ei). Let Hi denote the image of π1(Ei). Note that replaing ẽi by αẽi replaes
Hi by its onjugate ρ(α)Hiρ(α)−1. Pik a G�oyle of M̄ that represents ρ andsends edges of Ei to Hi. To see that suh a oyle exists, we an onstrut it asfollows: pik an Hi�oyle σi on Ei representing the restrition of ρ to π1(Ei).De�ne a oyle on M̄ , by letting its restrition to Ei be σi and letting it be 1 onedges of a maximal tree in M̄\ ∪i Ei ontaining edge paths from the base point in
M to Ei. This uniquely spei�es the value on all edges of M̄ . Up to the ation byoboundaries sending verties of Ei to Hi, this oyle is unique one the hoiesof lifts ẽi have been �xed. Pik elements gi satisfying g−1

i Higi ⊂ H . We all theseonjugation elements. Modifying the above G�oyle by the oboundary of the
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0�ohain

τ(v) =

{
gi if v ∈ Ei

1 otherwisegives us a (G, H)�oyle, whih up to the ation by oboundaries, only dependson the hoies of onjugation elements. We will refer to it as the (G, H)�oyleassoiated to ρ. Note that multiplying a onjugation element from the right by anelement in H , hanges the (G, H)�oyle by a oboundary. In the following wewill thus regard the onjugation elements as left H�osets.The onjugation elements, and therefore also the assoiated (G, H)�oyle, de-pend on the hoies of lifts. To indiate this dependene we will now denote them
gi(ẽi). To make the assoiated (G, H)�oyle independent of the hoies of lifts,the onjugation elements have to be hosen in an equivariant fashion.De�nition 5.11. Let ρ be a (G, H)�representation. A set of onjugation elements
gi(αẽi), α ∈ π1(M), satisfying the equivariane ondition(5.5) gi(αẽi) = ρ(α)gi(ẽi), α ∈ π1(M).is alled a deoration of ρ.Remark 5.12. Note that deorations are parametrized by the group (NG(H)/H

)n,where n is the number of non-trivial ends and NG(H) is the normalizer of H in G.Given a deoration, the assoiated (G, H)�oyle is well de�ned, and unique upto the ation by oboundaries. We have thus proved:Theorem 5.13. A deoration of a (G, H)�representation determines a fundamen-tal lass in H∗(G, H).5.3. An expliit onstrution of the fundamental lass. We now speializeto the ase of boundary-paraboli representations of tame 3�manifolds, i.e. the asewith G = PSL(2, C), and H = P . In this ase there is a partiularly simple way ofonstruting the (G, P )�oyle.Lemma 5.14. For a boundary-paraboli representation of a tame 3�manifold, thereis a natural one-one orrespondene between deorations by eulidean horospheresand deorations by onjugation elements.Proof. By Remark 3.10, a eulidean horosphere H(v) at v ∈ ∂H̄3 orresponds to aleft oset gP , where g takes H(∞) to H(v). Hene, we only need to hek that thetwo notions of equivariane as de�ned in De�nition 4.13 and De�nition 5.11 agree.We leave this to the reader. �Let ρ be a deorated boundary-paraboli representation of a tame 3�manifold
M . We will assume that M is ordered. This is no restrition sine we an alwaysobtain an ordering by performing a baryentri subdivision. Reall that ρ endowseah of the 3�ells of M with the shape of a deorated ideal simplex. We an thusthink of M as a olletion {∆i} of deorated ideal tetrahedra together with a set offae pairings. By Theorem 3.13 eah ∆i orresponds to a generator ∆̄i of B̄3(G, P ),whih is a trunated simplex together with a labeling of its oriented edges. Thefae pairings of ∆i indue fae pairings of the orresponding trunated simplies ∆̄i.Note that the omplex obtained by gluing these together is homeomorphi to M̄ ′,the manifold obtained from M̄ by removing disjoint open balls around eah interiorzero-ell. Sine both the deorations and the orderings respet the fae pairings, we



22 CHRISTIAN K. ZICKERTsee that the fae pairings of the trunated simplies respet the labelings of shortedges. Sine the labelings of long edges are determined uniquely by the labelings ofthe short edges, the fae pairings respet the labelings of long edges as well. Thismeans that the labelings form a (G, P )�oyle σ of M̄ ′.Theorem 5.15. The oyle σ is the (G, P )�oyle assoiated to ρ.Proof. Up to multipliation by elements of G, a developing map an be uniquelyreonstruted from the ideal simplex shapes and the gluing pattern. Sine a rep-resentation is determined by the equivalene lass of its developing map, it followsfrom Theorem 3.13 that σ represents ρ. The fat that σ is the (G, P )�oyle as-soiated to the orret deoration of ρ is an easy onsequene of the observation inRemark 3.14. �Corollary 5.16. The yle(5.6) ∑
ǫi∆̄i ∈ B̄3(G, P )represents the fundamental lass. As always, ǫi is a sign whih is positive if andonly if the orientation given by the ordering agrees with the indued orientation.Remark 5.17. If M is not ordered the above onstrution still works, but we need theordering to represent the fundamental lass in the trunated omplex. Performinga baryentri subdivision produes new non-ideal zero ells, and a deoration anbe obtained by equivariantly �shooting o�� these new zero ells to random pointsin ∂H̄3 and piking random deorations at these points satisfying the equivarianeondition (4.3). As before, this produes a (G, P )�oyle σ. The �shooting o��proess hanges the geometry, but the fundamental lass, whih only depends onthe deoration at ideal points, is still given by σ.Example 5.18. We illustrate the above by onstruting the fundamental lassof the geometri representation of the 52 knot omplement. This manifold has anordered triangulation as shown in Figure 4. For eah of the simplies the orientationdetermined by the ordering agrees with its inherited orientation, i.e., the signs ǫiare all positive. As desribed e.g. in Neumann�Zagier [14℄, the ideal simplex shapes
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Figure 4: Gluing pattern for the 52 knot omplement.obtained by developing the geometri representation an be found by solving a setof polynomial equations alled the gluing equations. In this ase there are �ve gluingequations, one for eah of the edges and two for the usp. The gluing equation foran edge states that the produt of the ross-ratio parameters assoiated to it is 1.



THE COMPLEX VOLUME OF A REPRESENTATION 23Letting u, v and w denote the ross-ratios, we an read o� the gluing equations forthe edges from Figure 4. We obtain:
u′u′′vv′w′2w′′ = 1, uu′′v′v′′w2 = 1, uu′vv′′w′′ = 1.Figure 5 below shows a developing of the usp. Sine the usp is a torus, the
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Figure 5: Developing image of the usp.peripheral subgroup has two generators, and the requirement that these both mapto parabolis yields two equations, whih an be read o� from Figure 5:
w−1u′ = 1, w′u′uv′ww′′u′w′wv′uu′′v′ = 1.The ideal triangulation is given by the unique solution of the above �ve equationssatisfying that u, v and w all have positive imaginary part. After a little algebraimanipulation we obtain that the solutions are given by u = x2, v = x2 − x + 1and w = v = x2 − x + 1, where x is a root of x3 − x2 + 1. The geometri solutionorresponds to the root with positive imaginary part. The two other solutionsorrespond to Galois onjugates.A deoration allows us to view the on�guration in Figure 5 as a on�gurationin C, and we an thus assign a omplex number to eah oriented edge as de�nedby the vetor going from the start point to the end point. In this example wehoose the deoration suh that the lower left edge has verties at 0 and 1. UsingFigure 3 we see that the labelings of all edges are given by produts of ross-ratioparameters, e.g. the shortest edge (oriented downwards) is labeled by w(v′′)−1 =

u−1v. Eah of the triangles in Figure 5 orresponds to a ut-o� triangle as indiatedby the numbers. This gives us labelings of the short edges in Figure 4 whihobviously satisfy (3.2), and by Lemma 3.3, the labelings of the long edges areuniquely determined by (3.3). We obtain that the edges marked with the smallarrow, the bigger arrow and the biggest arrow, respetively, are labeled by thematries (
0 −a−1

a 0

)
,
(

0 −b−1

b 0

)
,
(

0 −c−1

c 0

)
,with a, b and c satisfying(5.7) a2 = (w′′)−1 = 1 − x, b2 = 1, c2 = (ww′−1)−1 = x2 − x − 1.This �nishes the onstrution of the (G, P )�oyle assoiated to the geometrirepresentation, and the fundamental lass is now given by (5.6).Note that all we need to produe the fundamental lass is the gluing pattern ofthe triangulation together with the developing image of eah of the ends.Remark 5.19. To see the dependene of the deoration expliitly, onsider the nat-ural map H3(PSL(2, C), P ) → H2(P ). An expliit formula for this map is given bythe map taking a trunated simplex to the sum of the four triangles determined by



24 CHRISTIAN K. ZICKERTthe small edges. Changing the deoration orresponds to hanging the labelings ofshort edges by an element in C∗, and it thus follows that di�erent deorations yieldfundamental lasses having di�erent images in H2(P ). In the general ase, the fun-damental lass depends on the deoration whenever NG(H)/H ats non-triviallyon the homology of H .5.4. Other pairs. We brie�y disuss how the onstrution of the fundamental lassworks for other pairs of groups.5.4.1. Boundary-loxodromi representations. Suppose M is a tame 3�manifold whereall the ends of M are tori. A G�representation of π1(M) taking peripheral sub-groups to subgroups �xing a unique geodesi, is a (G, T )�representation, where T isthe subgroup of diagonal elements. Sine NG(T )/T = Z/2Z, there are 2n di�erentdeorations, where n is the number of ends. By Theorem 5.13 eah of these givesrise to a fundamental lass in H3(G, T ). One an prove that H3(G, T ) = P(C), sothe fundamental lasses of boundary-loxodromi representations ontain no moreinformation than the ross-ratios.5.4.2. Higher dimensions. Consider the pair (SL(n, C), P ), where P is the sub-group of SL(n, C) onsisting of upper triangular matries with 1 on the diagonal.Let Mk be a tame k�manifold, k ≥ 3. By Theorem 5.13, a deorated (SL(n, C), P )�representation of π1(M) gives rise to a fundamental lass in Hk(SL(n, C), P ). Wewish to �nd an expliit representative. The omplex B̄∗(PSL(2, C), P ) from Se-tion 3 generalizes in an obvious way to a omplex B̄∗(SL(n, C), P ), based on la-belings of trunated simplies, where long edges are labeled with ounter diagonalelements and short edges by elements in P . The expliit onstrution is via ageneralization of Lemma 3.5. We state it for n = 3. The general ase is similar.For g ∈ SL(3, C), let Mij(g) be the minor obtained from g by removing the ithrow and the jth olumn. As usual, we let gij denote the ijth entry of g.Lemma 5.20. Let gP , hP be suh that
(g−1h)31 6= 0 and det(M13(g

−1h)) 6= 0.Note that this is independent of the representatives. There are unique oset-represen-tatives gu and hv suh that (gu)−1hv is ounter diagonal. Expliitly, if
g−1h =




a b c
d e f
g h i



 , u =




1 x y
0 1 z
0 0 1



 , v =




1 r s
0 1 t
0 0 1



 , δ =




0 0 γ
0 β 0
α 0 0



then (gu)−1hv = δ if and only if(5.8) r =
−h

g
, y =

a

g
, z =

d

g
,

x =
ah − bg

dh − eg
, s =

ei − fh

dh − eg
, t =

fg − di

dh − eg
,

α = g, β =
−(dh − eg)

g
, γ =

1

dh − eg
.A deoration of ρ assoiates left P�osets to eah vertex of a fundamental domainof M in M̃ . If we view π1(M) as being generated by fae pairings of the fundamentaldomain, this proess is ompletely expliit. Given the P�osets, a representative



THE COMPLEX VOLUME OF A REPRESENTATION 25for the fundamental lass in B̄k(SL(3, C), P ) an be onstruted expliitly usingLemma 5.20. We leave the details to the reader.6. The omplex volumeWe return to the ase G = PSL(2, C). Even though the fundamental lassdepends on the hoie of deoration, it turns out that its image in B̂(C) under themap Ψ: H3(G, P ) → B̂(C) does not.Reall that a losed urve in a triangulated omplex is alled normal if it does notinterset the one-skeleton, and intersets every two-ell that it meets transversely.Let K be a omplex obtained by gluing together ideal simplies.The de�nition below is a slight generalization of Neumann [12, De�nition 4.4℄.De�nition 6.1. A weak �attening of K is a �attening of eah ideal simplex of
K suh that the total log-parameter around eah edge is zero. If the total log-parameter along any normal urve in the star of eah zero-ell is zero, it is alled asemi-strong �attening. The log-parameters must be summed aording to the signonventions of Neumann [12, De�nition 4.3℄.De�nition 6.2. The parity of an edge E in a simplex of K is de�ned by r mod 2,where w(E) = Log(z(E)) + rπi, and w(E) and z(E) are the log-parameter andross-ratio parameter of E.De�nition 6.3. A semi-strong �attening satisfying that the total parity parameteris zero along any normal urve in K, is alled a strong �attening.The theorem below summarizes the main results of Neumann [12℄.Theorem 6.4 (Neumann). There is a anonial isomorphism λ : H3(G) ∼= B̂(C)satisfying that ĉ2 = L̂ ◦ λ. Furthermore, if M is a usped hyperboli manifold Mwith an ideal triangulation, any strong �attening of M determines a fundamentallass α ∈ B̂(C) satisfying(6.1) L̂(α) = i(Vol(M) + i CS(M)).Reall the map Ψ: H3(G, P ) → B̂(C). By Theorem 3.13 a lass in H3(G, P ) anbe represented by a olletion of deorated ideal simplies, and in this piture, wean view Ψ as a way of endowing eah of these simplies with a �attening.Theorem 6.5. Let K be a omplex of deorated ideal simplies representing ahomology lass in H3(G, P ). The map Ψ endows K with a semi-strong �attening.Proof. Consider a normal urve α in the star of a zero-ell. Figure 6 shows αas viewed from the zero-ell. Eah triangle in the �gure orresponds to an idealsimplex. A vertex v of a triangle orresponds to an edge e of the simplex, and theside opposite v orresponds to the edge opposite e. Note that some of the trianglesmight be �folded bak� or ��at� even though this is not indiated in the �gure.Whenever α passes through a simplex ∆ it piks up a log-parameter of an edge.By (3.6), the log-parameter of an edge e is a signed sum of the Log(c)-parametersassoiated to the four edges of ∆ that are neither e nor the edge opposite e. Thesigns are indiated in the �gure. Note that the Log(c)�parameters are assoiatedto the one-ells of K, that is, edges that are identi�ed in K have the same Log(c)-parameter. A side of a triangle thus has three Log(c)-parameters assoiated to it



26 CHRISTIAN K. ZICKERT(one for eah vertex and one for the side). From Figure 6 we see that the totallog-parameter along the urve α is a signed sum of Log(c)-parameters assoiatedonly to the sides where α enters and exits. The other Log(c)-parameters anel out.From this we onlude that if α is a losed urve, the total log-parameter along αis zero. �
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Figure 6: A normal urve α in the star of a zero-ell.Remark 6.6. It is not true in general that Ψ provides a strong �attening.Remark 6.7. Neumann shows that parity along normal urves an be viewed asa ohomology lass in H1(M ; Z/2Z), and by [12, Corollary 5.4℄, the parity of asemi-strong �attening is an element in Ker
(
H1(M ; Z/2Z) → H1(∂M̄ ; Z/2Z)

).We wish to prove that the image of the fundamental lass in B̂(C) is independentof the deoration. To obtain this, we need to reall some ombinatoris of 3�ylesused in Neumann [12℄. This �rst appeared in Neumann [11℄.Let M be a tame 3�manifold with an ordered triangulation. For eah 3�simplex
∆ of M , we denote the six edges of ∆ by ei in the following way: e0 is the edgebetween vertex 0 and vertex 1 of ∆, e1 is the edge between verties 1 and 2, e2 isthe edge between verties 0 and 2. For i = 3, 4, 5, ei is the edge opposite ei−3. Weassoiate to ∆ a Z�module J∆ generated by the ei's and subjet to the relations

ei − ei+3 = 0 for i = 0, 1, 2.

e0 + e1 + e2 = 0.
(6.2)Let J be the diret sum⊕

J∆, summed over all the 3�simplies of M . For i = 0, 1let Ci be the free Z�module on the unoriented i�ells of M . There is a hainomplex
0 // C0

α
// C1

β
// J

β∗

// C1
α∗

// C0
// 0The map α takes a vertex to the sum of the inident 1�ells, and the map β isde�ned suh that its J∆�omponent takes a 1�ell E of M to the sum of the edges

ei of ∆ whih are identi�ed with E in M . We will not need the de�nition of theother maps.Reall that a boundary-paraboli representation of M allows us to regard M asa omplex of ideal simplies. Suppose we have piked �attenings (wi
0, w

i
1, w

i
2) ofeah ideal simplex ∆i. Consider the element w ∈ J ⊗ C whose ∆i�omponent is(6.3) ǫi(w

i
1e0 − wi

0e1) ∈ J∆i
⊗ C.Here ǫi is a sign indiating whether or not the vertex-ordering of ∆i agrees with theorientation inherited from M . By an abuse of notation we will for j ∈ J ⊗ C write
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ǫij for the element in J ⊗ C whose ∆i�omponent is ǫi times the ∆i�omponentof j. The following lemma ollets results shown in Neumann [12℄.Lemma 6.8. The �attenings onstitute a weak �attening of M if and only if
β∗(w) = 0. In this ase, the orresponding element in P̂(C) lies in B̂(C). Fur-thermore, this element is invariant under replaing w by w − πiǫiβ(x), where x isan element in C1 ⊗ Z.Reall that a deoration assoiates Log(c)�parameters to eah 1�ell of M . Itthus gives rise to an element l in C1 ⊗ C. The orresponding �attenings given by(3.6) give rise to an element w in J ⊗ C as above.Lemma 6.9. The elements l ∈ C1 ⊗ C and w ∈ J ⊗ C as above are related by
β(l) = −ǫiw.Proof. Let li be the ei�oe�ient of β(l) in J∆ ⊗ C. By de�nition of the map β, liis the Log(c)�parameter of the 1�ell orresponding to ei. Using (6.2), we have

β(l) = l0e0 + · · · + l5e5 = (l0 + l3 − l2 − l5)e0 + (l1 + l4 − l2 − l5)e1,whih by (3.6) equals the ∆�omponent of −ǫiw. �Theorem 6.10. The image of the fundamental lass in B̂(C) is independent of thehoie of deoration.Proof. For i = 1, 2, let li ∈ C1 ⊗ C and wi ∈ J ⊗ C be de�ned by two di�erentdeorations. By Lemma 6.9 we have β(l2 − l1) = ǫi(w1 − w2). Sine l2 − l1 =
α(x) + πiy for some y ∈ C1 ⊗Z and some x ∈ C0 ⊗C, Lemma 6.8 implies that theelements in B̂(C) are the same. �Remark 6.11. By a similar argument, the map Ψ is independent of the branh oflogarithm used in (3.6) to de�ne the �attenings.Reall that H3(G) is anonially isomorphi to B̂(C). In [12, Proposition 14.3℄Neumann shows that the long exat sequene for the pair (BP, BG) gives rise to asplit exat sequene(6.4) 0 // H3(G)

i∗
// H3(G, P )

∂∗

// H2(P ) // 0.Proposition 6.12. Identifying H3(G) with B̂(C), the map Ψ de�nes a splitting ofthe sequene (6.4).Proof. By Neumann [12, Lemma 11.3℄, the failure of the parity ondition e�ets theelement in B̂(C) at most by the unique element in B̂(C) of order 2. This means thatthe homomorphism Ψ◦i∗−id has image of order at most 2. Sine H3(G) is divisible,it an have no non-trivial �nite quotient. Hene, Ψ ◦ i equals the identity. �Remark 6.13. It follows from Proposition 6.12 that the semi-strong �attening givenby Ψ gives rise to the same element in B̂(C) as a strong �attening. This is not truefor an arbitrary semi-strong �attening. The key point is that Ψ is a homomorphism.De�nition 6.14. Let M be an oriented tame 3�manifold and let ρ be a boundary-paraboli representation. The omplex volume of ρ is de�ned by(6.5) i(Vol(ρ) + i CS(ρ)) = L̂ ◦ Ψ(α),where α is the fundamental lass of some deoration of ρ.



28 CHRISTIAN K. ZICKERTBy Remark 6.13 and Theorem 6.4, this de�nition agrees with the usual de�nitionif M is a hyperboli manifold and ρ is the geometri representation.Proposition 6.15. The omplex volume is unhanged when ρ is hanged by onju-gation by an element in PSL(2, C). If we hange the orientation of M , the omplexvolume hanges sign. If we hange ρ by omposing with the involution on PSL(2, C)given by omplex onjugation, Vol(ρ) hanges sign while CS(ρ) is �xed.Proof. The �rst statement follows from the fat that the assoiated (G, P )�oyleonly depends on the onjugation lass of ρ. The seond statement is obvious; allthat hanges is the signs of the ǫi's in (5.6). A hange of ρ by omplex onjugationorresponds to hanging the (G, P )�oyle by omplex onjugation. This hangesall the log-parameters by omplex onjugation, and sine
L̂([z̄,−p,−q]) = L̂([z, p, q]),the third statement follows. �Example 6.16. We ontinue the study of the 52 knot omplement from Exam-ple 5.18. The fundamental lass of a representation onjugate to a representationin P is learly trivial, and sine the 52 knot is a twist knot, we know from Re-mark 4.7 that all other boundary-paraboli representations are Galois onjugatesof the geometri one.We �rst ompute the omplex volume of the geometri representation. Reallthat the ross-ratios are given by u = x2, v = x2 − x + 1 and w = v, where x is aroot of x3 − x2 + 1. For the geometri solution, the approximate values are

x = 0.8774 + 0.7448i, u = 0.2150 + 1.3071i, v = w = 0.3376 + 0.5622i.The �attenings are given by (3.6). Using this together with (5.7) and the fatthat √1 − x = 1 − v and √
x2 − x − 1 = u for the value of x orresponding to thegeometri solution, we see that the �attening (w0, w1, w2) for the �rst simplex isgiven by

w0 = Log(1 − v) + Log(u) − Log(1) − Log(1 − v) = Log(u)

w1 = Log(1) + Log(1 − v) − Log(1) − Log(u) = −Log(1 − u) − πi

w2 = Log(1) + Log(u) − Log(1 − v) − Log(u) = −w0 − w1.Omitting the alulation of w2 = −w0 −w1, the �attenings of the seond and thirdsimplex are given as follows:
w0 =Log(1 − v) + Log(1) − Log(u) − Log(1) = Log(v) − πi

w1 =Log(u) + Log(1) − Log(1 − v) − Log(u) = −Log(1 − v)

w0 = Log(1 − v) + Log(1 − v) − Log(1 − v) − Log(u) = Log(w) − πi

w1 = Log(1 − v) + Log(u) − Log(1) − Log(1) = −Log(1 − w)Hene, we obtain that the image of the fundamental lass in B̂(C) is given by
[u; 0,−1] + [v;−1, 0] + [w;−1, 0] ∈ B̂(C).From this we an alulate the omplex volume of the 52 knot omplement to be(6.6) 2.828122088330783 . . .+ i 3.024128376509301 . . . ∈ C/iπ2Z.



THE COMPLEX VOLUME OF A REPRESENTATION 29It is well known that the trae �eld (see Example 4.5) of a link omplement isequal to the �eld generated by the ross-ratio parameters. By Example 5.18, thetrae �eld of the 52 knot omplement thus equals Q(x). Sine x satis�es x3−x2+1 =
0, this �eld has degree 3, and therefore has one real embedding and two omplexonjugate embeddings. By Proposition 6.15, the omplex volume of the omplexonjugate of the geometri representation is given by (6.6), but with the real parthaving the opposite sign. Let us ompute the omplex volume of the real Galoisonjugate. The ross-ratio parameters are still given by u = x2, v = w = x2−x+1,but now x is the real solution to x3 − x2 + 1 = 0. By the exat same method asabove, but with 1− v replaed by v − 1, sine √1 − x = v − 1 for the real solution,we obtain that the element in B̂(C) is

[u; 0, 0] + [v; 0, 1] + [w; 0, 1] ∈ B̂(C),whih gives a omplex volume of
−i 1.1134545524739240 . . . ∈ C/iπ2Z.Remark 6.17. Note that essentially the same formula applies to alulate the log-parameters for both the geometri representation and its Galois onjugates. Ifwe had used Neumann's formula we would have had to solve a new set of linearequations for eah Galois onjugate.Remark 6.18. The 52 knot omplement is listed as m015 in the Snap ensus andSnap omputes its Chern�Simons invariant to be −3.024... (mod π2), whih has theopposite sign of our result (6.6). This is beause the ensus manifold is the mirrorimage of the standard 52 knot omplement from the Rolfsen table.7. Lifts of boundary-paraboli representationsThis setion is devoted to a disussion of representations in SL(2, C). We shallsee that a boundary-paraboli SL(2, C)�representation has a fundamental lass in

H3(SL(2, C)), and that a hyperboli manifold with a spin struture has a funda-mental lass in H3(SL(2, C)) de�ned modulo 2�torsion. The 2�torsion ambiguityhas the interesting onsequene that a large lass of usped hyperboli manifoldsdon't have ideal triangulations admitting even �attenings.By the methods of Setion 5, a deorated boundary-paraboli SL(2, C)�repre-sentation determines a fundamental lass in H3(SL(2, C), P ). We wish to lift themap Ψ: H3(PSL(2, C), P ) → B̂(C) to a map de�ned on H3(SL(2, C), P ) and takingvalues in themore extended Bloh group. The more extended Bloh group is de�nedas in De�nition 1.7 but without inluding the transfer relation, and requiring thatthe integers p and q in De�nition 1.3 be even. We will refer to suh �attenings aseven �attenings. The more extended Bloh group is shown in Goette�Zikert [5℄to be isomorphi to H3(SL(2, C)). We will therefore in this setion denote the twoversions of the extended Bloh group by B̂SL(C) and B̂PSL(C), respetively.In Dupont�Zikert [4℄ we studied a omplex Ch 6=
∗ (C2) generated in dimension nby n�tuples of omplex vetors in C2 in general position. Using the simple fatthat SL(2, C)/P equals C2 − {0}, it is not di�ult to see that the okernel ofthe map Ch 6=

2 (C2) → Ch 6=
1 (C2) is equal to the kernel of the augmentation map

C0(SL(2, C)/P ) → Z. By Theorem 2.1 we have a anonial isomorphism
H3(SL(2, C), P ) ∼= H3(C

h 6=
∗ (C2) ⊗Z[SL(2,C)] Z).



30 CHRISTIAN K. ZICKERTAn expliit formula for this isomorphism is given by
C̄n(SL(2, C), P ) → Ch 6=

n (C2)

{gij} 7→ (v0, . . . , vn),(7.1)where vi = gij∞, whih is independent of j.We an now de�ne the desired lift of Ψ as the omposition of the isomorphismabove with the expliit map
H3(C

h 6=
∗ (C2) ⊗Z[SL(2,C)] Z) → B̂SL(C)onstruted in Dupont�Zikert [4℄. The map L̂ de�ned in Theorem 6.4 is shown inGoette�Zikert [5℄ to have a lift to B̂SL(C) taking values in C/4π2Z. Summarizingthe above, we have a ommutative diagram with exat olumns.

Z/4Z
_�

��

Z/4Z
_�

��

Z/4Z
_�

��

H3(SL(2, C), P )
Ψ

//

��
��

B̂SL(C)

��
��

bL
// C/4π2Z

��
��

H3(PSL(2, C), P )
Ψ

// B̂PSL(C)
bL

// C/π2ZThe ommutativity of the lower left square follows from the fat that for even�attenings, a semi-strong �attening is always a strong �attening. The proof of thisfollows the proof of Neumann [12, Proposition 5.3℄ word by word.We an now use the above diagram to de�ne the omplex volume of a boundary-paraboli SL(2, C)�representation as an element in C/4iπ2Z.7.1. Spin strutures and even �attenings. A spin struture of a hyperbolimanifold M is equivalent to a lift of the geometri representation to SL(2, C). If
M is losed it thus de�nes a fundamental lass in H3(SL(2, C)) ∼= B̂SL(C), and aomplex volume in C/4iπ2Z. If M has usps, lifts of the geometri representationare not boundary-paraboli. They are only (SL(2, C),±P )�representations. Infat, the proposition below, see e.g. Calegari [2, Corollary 2.4℄, gives a onreteobstrution to de�ning a fundamental lass in H3(SL(2, C)) of a usped hyperbolimanifold with a spin struture.Proposition 7.1. Let M be a usped hyperboli manifold. Any lift of the geomet-ri representation to SL(2, C) maps any urve bounding a 2�sided inompressiblesurfae to an element of SL(2, C) with trae −2.Remark 7.2. It is not di�ult to hek that the map

H3(SL(2, C), P ) → H3(SL(2, C),±P )is surjetive with kernel of order 2. This implies that a hyperboli manifold with aspin struture does have a fundamental lass in H3(SL(2, C)) modulo 2�torsion.Remark 7.3. Reall that a deorated ideal triangulation of a usped hyperbolimanifold M naturally gives rise to a (PSL(2, C), P )�oyle on M̄ representing thegeometri representation. As explained in Remark 3.4, the labelings an be regardedas elements in SL(2, C), but by Proposition 7.1 above, the (PSL(2, C), P )�oyleis never an (SL(2, C), P )�oyle.



THE COMPLEX VOLUME OF A REPRESENTATION 31Proposition 7.1 has the following interesting onsequene.Theorem 7.4. Let M be a usped hyperboli 3�manifold satisfying(7.2) Ker
(
H1(M ; Z/2Z) → H1(∂M̄ ; Z/2Z)

)
= 0.There is no ideal triangulation of M admitting an even, strong �attening.Proof. As in (6.3), we an regard any �attening as an element in J ⊗ C. Pik adeorated ideal triangulation of M , and let w ∈ J ⊗ C be the �attening given bythe deoration. Sine M satis�es (7.2), it follows from Remark 6.7 that w is astrong �attening. By Lemma 6.9, w = −ǫiβ(l), where l ∈ C1 ⊗ C is given by the

Log(c)�parameters. It is a simple onsequene of Remark 7.3 and Remark 3.16that w is not an even �attening. By Neumann [12, Lemma 9.3℄, any two strong�attenings di�er by an element in C1⊗πiZ. Hene, any strong �attening w′ is givenas −ǫiβ(l + x), where x is an element in C1 ⊗ πiZ. Let E be a one-ell regarded asan element of C1 = C1 ⊗ Z. Reall that E has a labeling
g(E) =

(
0 −c−1

c 0

)
∈ SL(2, C),with Log(c)�parameter Log(c). Note that adding πiE ∈ C1 ⊗ πiZ to l has thesame e�et on the parity of the orresponding �attening as hanging the sign of

g(E). Now if w′ were an even �attening, this would imply that it would be possibleto obtain an even �attening by hanging signs of some of the labelings of longedges. By Remark 3.16, this would imply that the new labelings (after a global signhange if neessary) would onstitute an (SL(2, C), P )�oyle. This is impossibleby Proposition 7.1. �Remark 7.5. It seems worth mentioning that the property (7.2) also implies thatthe trae �eld of M is equal to the invariant trae �eld of M .Referenes[1℄ S. Boyer and X. Zhang. On Culler-Shalen seminorms and Dehn �lling. Ann. of Math. (2),148(3):737�801, 1998.[2℄ Danny Calegari. Real plaes and torus bundles. Geom. Dediata, 118:209�227, 2006.[3℄ D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen. Plane urves assoiated toharater varieties of 3-manifolds. Invent. Math., 118(1):47�84, 1994.[4℄ Johan L. Dupont and Christian K. Zikert. A dilogarithmi formula for the Cheeger-Chern-Simons lass. Geom. Topol., 10:1347�1372 (eletroni), 2006.[5℄ Sebastian Goette and Christian Zikert. The extended Bloh group and the Cheeger-Chern-Simons lass. Geom. Topol., 11:1623�1635 (eletroni), 2007.[6℄ Oliver Goodman. Snap. Available at http://www.ms.unimelb.edu.au/~snap/.[7℄ JimHoste and Patrik D. Shanahan. Trae �elds of twist knots. J. Knot Theory Rami�ations,10(4):625�639, 2001.[8℄ Saunders Ma Lane. Homology. Classis in Mathematis. Springer-Verlag, Berlin, 1995.Reprint of the 1975 edition.[9℄ Colin Malahlan and Alan W. Reid. The arithmeti of hyperboli 3-manifolds, volume 219of Graduate Texts in Mathematis. Springer-Verlag, New York, 2003.[10℄ Robert Meyerho�. Density of the Chern-Simons invariant for hyperboli 3-manifolds. In Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984), volume 112 of LondonMath. So. Leture Note Ser., pages 217�239. Cambridge Univ. Press, Cambridge, 1986.[11℄ Walter D. Neumann. Combinatoris of triangulations and the Chern-Simons invariant forhyperboli 3-manifolds. In Topology '90 (Columbus, OH, 1990), volume 1 of Ohio StateUniv. Math. Res. Inst. Publ., pages 243�271. de Gruyter, Berlin, 1992.
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