MATH 141 (Section 0601) – General Information – Spring 2016

INSTRUCTOR: Frances Gulick (Dr. or Mrs.)

HOURS: 10am-12pm MWF or by appointment
(hours may be adjusted after the beginning of the semester)

TAS: Chris Hollrah
Email: ffg@math.umd.edu
OFFICE: MTH2101, ph: 301 405 5154

TEXT:

Course total can be calculated along with its median.

Exam grades are never curved. If there is any adjustment to the listed grading scale, it will be done only at the end of the semester.

Worksheets
Quizzes, white papers
Homework

COURSE POINTS

Assistance Services, etc.

Resources:

For schedules go to www.math.umd.edu/undergraduate/resources. Old tests are also available through this webpage.

Math 141 is a 4-credit continuation of MATH 140, including techniques of integration, improper integrals, applications of integration (such as volumes, work, arc length, moments), inverse functions, exponential and logarithmic functions, sequences and series. The schedule of topics will be available on WebAssign Resources. Credit cannot be earned for both Math 141 and 221, though it may be appropriate for some students to take these combinations of courses. All sections will require the use of a TI graphing calculator (or equivalent) for homework and worksheets but calculators are not allowed for quizzes and exams.

Homework: Expect to spend on average at least 2 hours of study time per hour of class time. This includes reviewing, doing problems, checking and correcting them, and reading the new material for the next class. The practice problems listed on the course schedule represent the type of question you should be able to answer for each topic. Graded homework assignments are available and submitted via WebAssign (www.webassign.net/um/LOGIN.html). Instructions can be found on the Math Department webpage (www.math.umd.edu) by choosing Undergraduate Resources and WebAssign on the bottom of the page. You can purchase the access code on line through WebAssign; the cost is $22.95 for the semester. You will be able to save your work as you go and usually will have three opportunities to submit answers for problems. Each assignment listing gives the section(s) for the assignment and the due date and time. Do the practice problems first, to get a feel for the material, before working on the WebAssign questions.

Honor Code: The University of Maryland College Park has a nationally recognized Code of Academic Integrity, administered by the Student Honor Council. This Code sets standards for academic integrity at Maryland for all undergraduate and graduate students. As a student you are responsible for upholding these standards for this course. It is very important for you to be aware of the consequences of cheating, fabrication, facilitation, and plagiarism. For more information on the Code of Academic Integrity or the Student Honor Council, please visit http://www.studenthonorcouncil.umd.edu/whatis.html.

Copying worksheet or homework solutions or quiz or test answers from someone else is cheating as is altering a quiz or exam answer. Copying solutions from the solutions manual or another source is plagiarism. While you may be asked specifically to write and sign the following honor pledge on quizzes and exams, the honor pledge applies to all work you turn in whether signed or not. The pledge, approved by the University Senate, reads: “I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/quiz/examination.”

Exams: There will be four 100-point exams during the semester plus a 200-point final exam. The final exam is scheduled for 1:30-3:30 pm on Thursday, May 12. Old exams are available on the web. To find them, follow the Undergraduate Resources link (math.umd.edu). In addition, your grade includes points for quizzes and white papers, which may be given at any time in lecture or discussion, worksheets and homework. In general no make-ups are available for exams, worksheets, quizzes, or white papers. The lowest quiz/white-paper scores will be dropped at the rate of about one for every six given. The lowest three homework and the lowest three worksheet scores will also be dropped. If you miss an exam with an excused absence, the remaining three exam scores will be multiplied by 3.5/3. Excused absences will be given only with documentation and only for valid medical reasons, university business, or appearances in court. Excused quizzes and worksheets are included among the dropped scores unless there are extenuating circumstances. Any unexcused quizzes, worksheets, homework assignments, or exams will be counted as a “0”, including the final exam. If you will miss an exam, notify me or your teaching assistant as soon as possible. Messages may be left via email (best), or by calling me at 301-405-5154. Documentation for an excused absence should be presented not later than the first class attended after the missed exam. If you are registered with DSS, you should present the test form not later than two lecture days prior to the scheduled exam.

To ensure success in this course students are expected to attend both lecture and discussion regularly, do homework as assigned, and seek help when necessary. Many resources are available: textbook, instructor, discussion TAs, tutors, the departmental test bank, Learning Assistance Services, etc.

EXAM DATES: Feb. 12, March 4, April 1, April 29; Final Exam: Thursday, May 12, 1:30 - 3:30 (rooms to be announced in May)

COURSE POINTS:

<table>
<thead>
<tr>
<th>Homework</th>
<th>30 pts</th>
<th>Expected Grading Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes, white papers</td>
<td>80 pts</td>
<td>A: 90 - 100%</td>
</tr>
<tr>
<td>Worksheets</td>
<td>40 pts</td>
<td>B: 80 - 89%</td>
</tr>
<tr>
<td>3 highest hour exams</td>
<td>300 pts</td>
<td>C: 70 - 79%</td>
</tr>
<tr>
<td>Lowest hour exam</td>
<td>50 pts</td>
<td>D: 60 - 69%</td>
</tr>
<tr>
<td>Final exam</td>
<td>200 pts</td>
<td>F: < 60%</td>
</tr>
</tbody>
</table>

Exam grades are never curved. If there is any adjustment to the listed grading scale, it will be done only at the end of the semester when the course total can be calculated along with its median.