Math 241 Exam 4 Sample 2

Directions: Do not simplify or evaluate unless indicated. No calculators are permitted. Show all work as appropriate for the methods taught in this course. Partial credit will be given for any work, words or ideas which are relevant to the problem.

Please put problem 1 on answer sheet 1

1. (a) Suppose \(\vec{F}(x, y, z) = (6xy + z \cos(x)) \hat{i} + (3x^2) \hat{j} + (\sin(x) - 1) \hat{k} \). Using that systematic method shown in class, find a function \(f(x, y, z) \) such that \(\vec{F} = \nabla f \). \[10 \text{ pts} \]

(b) First explain why the integral \(\int_C yz \, dx + xz \, dy - xy \, dz \) for \(z > 0 \) is independent of path \[10 \text{ pts} \]

and then evaluate this integral where \(C \) is any curve from \((1, 2, 1)\) to \((0, 3, 3)\).

Please put problem 2 on answer sheet 2

2. (a) Evaluate the integral \(\int_C x + \frac{16}{x}y - z + 8 \, ds \), where \(C \) is the curve with parametrization \(\vec{r}(t) = t^2 \hat{i} + 3t \hat{j} + (t^2 + 8) \hat{k} \) for \(0 \leq t \leq 2 \). \[10 \text{ pts} \]

(b) Use Green’s Theorem to evaluate \(\int_C 3y \, dx + (2xy + 4) \, dy \), where \(C \) is as shown: \[10 \text{ pts} \]

Please put problem 3 on answer sheet 3

3. Let \(\Sigma \) be the part of the parabolic sheet \(z = 4 - x^2 \) above the \(xy \) plane and between \(y = 0 \) and \(y = 4 \) with downwards orientation. Draw a picture of \(\Sigma \) and evaluate the integral \(\iint_{\Sigma} \vec{F} \cdot \hat{n} \, dS \), where \(\vec{F}(x, y, z) = 3 \hat{i} + 2z \hat{j} + z \hat{k} \). \[20 \text{ pts} \]

Please put problem 4 on answer sheet 4

4. Let \(C \) be the intersection of the cylinder \(x^2 + y^2 = 9 \) with the parabolic sheet \(z = y^2 \). Suppose \(C \) has the clockwise orientation when viewed from above. Use Stokes’ Theorem to convert \(\int_C (4x^2z^2 \hat{i} + xy \hat{j} + y^3 \hat{k}) \cdot d\vec{r} \) to a surface integral. Give an explicit description of your surface \(\Sigma \) as the graph of a function \(f \) on a region \(R \), then rewrite your surface integral as an iterated integral in whichever coordinate system (polar or rectangular) you find most appropriate. You do not need to evaluate the final integral. \[20 \text{ pts} \]

Please put problem 5 on answer sheet 5

5. Suppose \(\Sigma \) is composed of the portion of \(x^2 + z^2 = 4 \) between \(y = -a \) and \(y = a \), along with the disks of radius 2 which seal the cylinder on each end. Suppose a fluid flow is given by \(\vec{F}(x, y, z) = 3xy^2 \hat{i} - y^3 \hat{j} + 4z \hat{k} \). Use the Divergence Theorem to find the appropriate \(a \) such that the fluid is flowing out through \(\Sigma \) at a rate of \(128\pi \). \[20 \text{ pts} \]