Math 241 Parametrization of Surfaces - Solutions

1. (a) Example: Σ is the part of the cone $z = \sqrt{x^2 + y^2}$ above the rectangle in the xy-plane with opposite corners $(1, 0)$ and $(2, 5)$.
 Solution: $\mathbf{r}(x, y) = x\mathbf{i} + y\mathbf{j} + \sqrt{x^2 + y^2}\mathbf{k}$ with $1 \leq x \leq 2$ and $0 \leq y \leq 5$.
(b) Example: Σ is the part of the paraboloid $z = 9 - x^2 - y^2$ above the triangle in the xy-plane with corners $(0, 0)$, $(4, 0)$ and $(0, 2)$.
 Solution: $\mathbf{r}(x, y) = x\mathbf{i} + y\mathbf{j} + (9 - x^2 - y^2)\mathbf{k}$ with $0 \leq x \leq 4$ and $0 \leq y \leq 2 - \frac{1}{2}x$.
(c) Example: Σ is the part of the plane $z = 20 - x - 2y$ above R, where R is the region in the xy-plane between $y = x^2$ and $y = 4$.
 Solution: $\mathbf{r}(x, y) = x\mathbf{i} + y\mathbf{j} + (20 - x - 2y)\mathbf{k}$ with $-2 \leq x \leq 2$ and $x^2 \leq y \leq 4$.

2. (a) Example: Σ is the part of the cone $z = 2 + \sqrt{x^2 + y^2}$ inside the cylinder $x^2 + y^2 = 4$.
 Solution: $\mathbf{r}(r, \theta) = r\cos\theta\mathbf{i} + r\sin\theta\mathbf{j} + (2 + r)\mathbf{k}$ with $0 \leq \theta \leq 2\pi$ and $0 \leq r \leq 2$.
(b) Example: Σ is the part of the parabolic sheet $z = y^2$ inside the cylinder $r = \sin\theta$.
 Solution: $\mathbf{r}(r, \theta) = r\cos\theta\mathbf{i} + r\sin\theta\mathbf{j} + r^2\sin^2\theta\mathbf{k}$ for $0 \leq \theta \leq \pi$ and $0 \leq r \leq \sin\theta$.
(c) Example: Σ is the part of the plane $z = 20 - x - 2y$ in the first octant and inside $r = 2$.
 Solution: $\mathbf{r}(r, \theta) = r\cos\theta\mathbf{i} + r\sin\theta\mathbf{j} + (20 - r\cos\theta - 2r\sin\theta)\mathbf{k}$ with $0 \leq \theta \leq \frac{\pi}{2}$ and $0 \leq r \leq 2$.

3. (a) Example: Σ is the part of the paraboloid $y = x^2 + z^2$ to the right of the square in the xz-plane with corners $(0, 0)$, $(2, 0)$, $(0, 2)$ and $(2, 2)$.
 Solution: $\mathbf{r}(x, z) = x\mathbf{i} + (x^2 + z^2)\mathbf{j} + z\mathbf{k}$ with $0 \leq x \leq 2$ and $0 \leq z \leq 2$.
(b) Example: Σ is the part of the parabolic sheet $x = 16 - z^2$ inside the cylinder $y^2 + z^2 = 9$.
 Solution: $\mathbf{r}(r, \theta) = (16 - r^2\sin^2\theta)\mathbf{i} + r\cos\theta\mathbf{j} + r\sin\theta\mathbf{k}$ with $0 \leq \theta \leq 2\pi$ and $0 \leq r \leq 3$.

4. (a) Example: Σ is the part of the cylinder $x^2 + y^2 = 9$ between $z = 0$ and $z = 2$.
 Solution: $\mathbf{r}(z, \theta) = 3\cos\theta\mathbf{i} + 3\sin\theta\mathbf{j} + z\mathbf{k}$ with $0 \leq \theta \leq 2\pi$ and $0 \leq z \leq 2$.
(b) Example: Σ is the part of the cylinder $x^2 + z^2 = 9$ between $y = 0$ and $y = 2$.
 Solution: $\mathbf{r}(y, \theta) = 3\cos\theta\mathbf{i} + y\mathbf{j} + 3\sin\theta\mathbf{k}$ with $0 \leq \theta \leq 2\pi$ and $0 \leq y \leq 2$.
(c) Example: Σ is the part of the sphere $x^2 + y^2 + z^2 = 9$ below the cone $z = \sqrt{x^2 + y^2}$.
 Solution: $\mathbf{r}(\phi, \theta) = 3\sin\phi\cos\theta\mathbf{i} + 3\sin\phi\sin\theta\mathbf{j} + 3\cos\phi\mathbf{k}$ with $0 \leq \theta \leq 2\pi$ and $\pi/4 \leq \phi \leq \pi$.
(d) Example: Σ is the part of the cylinder $x^2 + y^2 = 9$ between $z = 0$ and $z = 2$ and in the first octant.
 Solution: $\mathbf{r}(z, \theta) = 3\cos\theta\mathbf{i} + 3\sin\theta\mathbf{j} + z\mathbf{k}$ for $0 \leq \theta \leq \pi/2$ and $0 \leq z \leq 2$.
(e) Example: Σ is the part of the sphere $x^2 + y^2 + z^2 = 9$ above the xy-plane.
 Solution: $\mathbf{r}(\phi, \theta) = 3\sin\phi\cos\theta\mathbf{i} + 3\sin\phi\sin\theta\mathbf{j} + 3\cos\phi\mathbf{k}$ with $0 \leq \theta \leq 2\pi$ and $0 \leq \phi \leq \pi/2$.