1. True or false: Determine if the following are true or false. If false provide a counterexample. [15 pts]
 (a) A subsequence of a monotone sequence is also monotone.
 (b) A subsequence of an unbounded sequence cannot converge.
 (c) A function \(f : (1, 3) \rightarrow \mathbb{R} \) must be bounded.
 (d) A continuous function \(f : [a, b] \rightarrow \mathbb{R} \) has \(f(\mathbb{R}) \) bounded.
 (e) A bounded subset of \(\mathbb{R} \) must have a maximum.

2. Prove that for \(b > 0 \) and \(n \in \mathbb{N} \) we have \(\left(\frac{1}{2} + b \right)^n \geq b^{n-1} \left(b + \frac{1}{2} n \right) \). [10 pts]

3. Using only the Archimedean Principle give a direct proof that \(\left\{ 7 + \frac{1}{n} + \frac{2}{\sqrt{n}} \right\} \) converges to 7. [10 pts]

4. Define \(f : \mathbb{R} \rightarrow \mathbb{R} \) by \(f(x) = x^2 + 2 \). Verify the \(\epsilon - \delta \) criterion for \(f(x) \) at \(x = 3 \). [15 pts]

5. Prove that the function
 \[
 f(x) = \begin{cases}
 x^2 & \text{if } x < 1 \\
 x - 1 & \text{if } x \geq 1
 \end{cases}
 \]
 is continuous at \(x = 2 \) but not at \(x = 1 \). [15 pts]

6. Prove that the function \(f : (0, 1) \rightarrow \mathbb{R} \) given by \(f(x) = \frac{1}{x-1} \) is not uniformly continuous. [10 pts]

7. Prove that a nonnegative convergent sequence must converge to a nonnegative value. [10 pts]

8. Suppose \(\{b_n\} \) is a bounded nonnegative sequence and \(0 \leq r < 1 \). Define
 \[
 s_n = b_1 r + b_2 r^2 + b_3 r^3 + \ldots + b_n r^n
 \]
 Prove that \(\{s_n\} \) converges. Hint: Use the Monotone Convergence Theorem. [15 pts]

The End