1. True or false: Determine if the following are true or false. If false provide a counterexample. [20 pts]
 You do not need to prove anything about the counterexamples, just provide them.
 (a) The product of two irrational numbers is irrational.
 (b) If \(f : [a, b] \to \mathbb{R} \) is integrable on \([a, b]\) then it is differentiable on \((a, b)\).
 (c) The Taylor Polynomial for a polynomial equals that polynomial.
 (d) All polynomials are differentiable everywhere.

2. Suppose that \(f : (a, b) \to \mathbb{R} \) is uniformly continuous. Show that \(f \) is bounded. [15 pts]

3. Prove using Mathematical Induction that \(\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6} \). [15 pts]

4. Using only the Archimedian Principle prove that \(\left\{ \frac{\sqrt{n}}{\sqrt{k}} + \frac{1}{n^2} + 2 \right\} \) converges. [15 pts]

5. Prove that \(S \subseteq \mathbb{R} \) is dense iff \(\forall x \in \mathbb{R} \) there is a sequence \(\{x_n\} \) in \(S \) which converges to \(x \). [15 pts]

6. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is such that \(f(2) = 3 \), \(f'(2) = 0 \) and \(f''(x) \geq 3 \) for all \(x \in [0, 4] \). Find a lower bound on \(f(4) \). [15 pts]

7. Define \(f : [0, 2] \to \mathbb{R} \) by
 \[
 f(x) = \begin{cases}
 x^2 & \text{if } 0 \leq x \leq 1 \\
 x & \text{if } 1 < x \leq 2
 \end{cases}
 \]
 Using the limit definition of the derivative and the sequence definition of the limit prove that \(f'(1) \) does not exist. [10 pts]

8. Suppose \(f : \mathbb{R} \to \mathbb{R} \) is differentiable at \(x_0 \in (a, b) \) and \(f'(x_0) > 0 \). Prove there is a neighborhood \(I \) of \(x_0 \) such that for \(x \in I \) we have \(x < x_0 \Rightarrow f(x) < f(x_0) \) and \(x > x_0 \Rightarrow f(x) > f(x_0) \). [15 pts]

9. Suppose \(f(4) = 3 \) and \(F(x) = \int_0^x (x-t) f(t^2) \, dt \). Find \(F'(2) \). [10 pts]

10. Show that the Taylor expansion of \(f(x) = \sin(4x) \) around any \(x_0 \) converges for all \(x \). [10 pts]

11. Define \(f_n : [3, \infty) \to \mathbb{R} \) by \(f_n(x) = \frac{1}{n+x} \). Find the function \(f : [3, \infty) \to \mathbb{R} \) to which \(\{f_n\} \) converges pointwise and then show this convergence is uniform. [15 pts]

12. Define \(f : [0, 1] \to \mathbb{R} \) by \(f(x) = \frac{1}{x+1} \). Using our proof of the Weierstrass Approximation Theorem find the minimum degree polynomial which approximates \(f(x) \) uniformly within \(\epsilon = 0.1 \) and write this polynomial in \(\Sigma \) form. [15 pts]

13. Use Taylor Polynomials to prove that \(\int_0^1 e^{x^2} \, dx \geq \frac{4}{3} \). [15 pts]

14. Show that \(\sum_{k=1}^{\infty} \frac{3}{k^6} \) converges using the Weierstrass Convergence Criterion. [15 pts]