A matrix is numbers arranged in rows and columns.

Think “spreadsheet”. A name from computer programming that may be familiar to you is “array”. Back in the day when I was programming in COBOL we had to arrange our data in “fields”. Essentially, a matrix is one method of organizing and arranging data.

Matrices are often/usually named by capital letters italicized. Some examples would be:

The size of a matrix is stated as “number of rows by number of columns”. Matrix A is a 3 by 1 matrix. B is a 3×3 matrix. F is a 1 by 4 matrix. M is a 3×4 matrix.

A square matrix has the same number of rows and columns. The only square matrix above is B.

Matrix F is a row matrix (size $1 \times$ something); A is a column matrix (size something \times 1).

Two matrices are equal if and only if they are the same size and have matching corresponding row/column elements. For example:

Example A: Solve for the variables x and y.

$$
\begin{bmatrix}
-2 & 7 \\
x-4 & -5
\end{bmatrix} = \begin{bmatrix}
2y-1 & 7 \\
6 & -5
\end{bmatrix}
$$

Calculus 131, section 10.2-10.3a Addition and Subtraction of Matrices
Scalar Multiplication of a Matrix
Adding and subtracting matrices is essentially combining like terms: corresponding row/column entries are added together.

Example B. The students in the four 02** discussion sections of the Fall 2011 Math 131 class had the following breakdown of majors and years.

<table>
<thead>
<tr>
<th></th>
<th>FR</th>
<th>SO</th>
<th>JR</th>
<th>SR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0211</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Bosch</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>OTHER</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0221</td>
<td>3</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bosch</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0231</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Bosch</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>OTHER</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0241</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bosch</td>
<td>3</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>OTHER</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Rewrite this data into matrices M, N, P and Q where the rows represent majors, columns represent years, and each matrix represents one section.

a) Find $R = M + N + P + Q$ and interpret what it tells us.

b) How many sophomore Biology Science majors are there in the 02** section of the Fall 2011 Math 131 class?

c) How many freshmen are there in the 02** section of the Fall 2011 Math 131 class?

d) How many Letters and Sciences majors are there in the 02** section of the Fall 2011 Math 131 class?
Semi-random notes on matrices:

Any matrices being added *must* be the same size.

Your text introduces the “additive inverse” of a matrix. I’ll talk about this as part of subtraction later on.

A “zero matrix” has elements that are all the number 0.

Now we move over to the first topic in section 10.3.

Multiplying a matrix by a scalar (i.e. constant coefficient) is essentially distribution.

Example C:

Given \(B = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 1 & 2 \end{bmatrix} \), find \(-2B\).

Example C extended:

Given \(B = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 1 & -1 \\ 2 & 1 & 2 \end{bmatrix} \) and \(C = \begin{bmatrix} -1 & 2 & -2 \\ 0 & -2 & 1 \\ 3 & 0 & -3 \end{bmatrix} \), find \(3B - 2C\).

I recommend thinking of subtraction as “adding a negative”. Do the scalar multiplication first to make sure that a “minus a negative” isn’t missed.