1. *To be done in Matlab.* Compute the first 3 positive zeros of

\[f_k(x) = kx \sin x - \cos x = 0 \]

for \(k = 0, 2, 1, \) and \(5. \) Start with plotting the graphs of the functions \(f_k(x). \) Then:

a. Experiment with the Newton method. First set \(k = 1 \) and the initial points \(x_0 = 1, 2.1, 2.2. \) See where the iterations will converge. Then for each of the values of \(k \) and for each of the first 3 roots pick a good initial point. Make tables of \(|x_n - x_{n-1}|. \)

b. Show that Eq. (1) is equivalent to the series of equations \(T_m(x) = x, \) \(m = 0, 1, 2, \ldots, \) where

\[T_m(x) = \frac{\pi}{2} - \arctan(kx) + \pi m. \]

Find out for which \(k \)'s and \(m \)'s \(T_m(x) \) is a contraction on the corresponding interval \(I_m = \left[\pi m - \frac{\pi}{2}, \pi m + \frac{\pi}{2} \right]. \) Use the fixed point iteration, if possible, to find the roots.

2. Consider the equation \(x^m = 0 \) where \(m \) is an integer greater than 1. Then \(x^* = 0 \) is the only root, and it is degenerate. Show that the Newton’s method converges \(q \)-linearly and find the \(q \)-factor.

3. Let \(f \) be a real-valued function of one variable, \(f(x^*) = 0, f'(x^*) \neq 0, f''(x^*) = 0 \) and \(f'' \) is Lipschitz continuous. Prove that then the Newton iteration converges cubically (i.e. \(q \)-superlinearly with \(q \)-order 3).

4. Show that the iterations of the secant method

\[x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \]

converge \(q \)-superlinearly with \(q \)-order \((\sqrt{5} + 1)/2 \) (the golden ratio).

5. A function \(G \) is said to be Hölder continuous with exponent \(\alpha \) in \(\Omega \) if

\[\|G(x) - G(y)\| \leq K\|x - y\|^\alpha \]

for all \(x, y \in \Omega. \)

Let \(F(x) : \mathbb{R}^n \to \mathbb{R}^n \) be a continuous function, \(F(x^*) = 0, F'(x^*) \) be nonsingular, and \(F'(x) \) be Hölder continuous with exponent \(\alpha > 0 \) in a convex open set \(\Omega \subset \mathbb{R}^n \) containing \(x^*. \) Show that then the Newton iterates converge with \(q \)-order \(1 + \alpha \) is \(x_0 \) is sufficiently close to \(x^*. \)