Midterm Exam.

1. Suppose you want to find the best approximation of a continuous function \(f(x) \) on \([0, 1]\) with a polynomial of degree \(n \) in the \(L_2 \) (least squares) sense. Outline a way to do it that is appropriate for large \(n \).

2. **True/False.** Let \(f(x) = \int_0^x \sin \left(\frac{1}{\ln(b\cdot x)} \right) \, dt, \ x \in [0, 2\pi] \). For any \(\epsilon > 0 \) one can find a polynomial \(p(x) \) such that \(\sup_{x \in [0, 2\pi]} |f(x) - p(x)| < \epsilon \). Please explain your answer.

3. **True/False.** Let \(f(x) = \int_0^x \sin \left(\frac{1}{\ln(2\cdot x)} \right) \, dt, \ x \in [0, 2\pi] \). For any \(\epsilon > 0 \) one can a Chebyshev interpolant \(p(x) \) such that \(\sup_{x \in [0, 2\pi]} |f(x) - p(x)| < \epsilon \). Please explain your answer.

4. Suppose you are applying \texttt{ifft} and then \texttt{fft} to the function \(f(x) = \sin (50x) \) on the interval \([0, 2\pi]\) for \(N = 32 \). What will be the outcome?
 Hint: find where the frequencies of \(f(x) \) will be aliased.

5. Suppose an unknown analytic function \(f(x) \) is represented by a set of values at equidistant \(N \) points on the interval \([a, b]\), where \(N \) is large. How would you find \(f \) at intermediate points? How will the error of your interpolation depend on \(N \)?

6. Suppose \(f(x) \) is represented by a set of noisy data measured at equidistant \(N \) points where \(N \) is large. Suppose you need to estimate \(f'(x) \). How would you do it?

7. Suppose you need to estimate the first derivative of \(f \) at \(x = 0 \) accurately while you are given \(f(0.00), f(0.05), f(0.10), f(0.15), f(0.20) \). Please suggest two ways to do it. The error of your estimates will be proportional to \((0.05)^p\). What are \(p \)'s for your estimates?

8. Suppose you need to integrate \(f(x) = -31.83x^3 + 157.87x^2 - 468.26x - 4.01 + \cos (x + \sin 0.25x) \) over the interval \([0, 8\pi]\) with high precision. How can you do it using composite rules? How fast will the error of your integration decay with the size of subinterval \(h \)?

9. Let \(C_{n,0}(x) \) be a power series for \(f(x) \) obtained from the Padé power series \(R_{n+1,0}(x) \) using the method of economization on the interval \([-\alpha, \alpha] \). Consider the error functions \(E_1(x) = |f(x) - R_{n,0}(x)| \), \(E_2(x) = |f(x) - R_{n+1,0}(x)| \), and \(E_3(x) = |f(x) - C_{n,0}(x)| \) on \([-\alpha, \alpha] \). Compare the behavior of these error functions on the interval \([-\alpha, \alpha] \).

10. Suppose you need to estimate the integral \(I(f) = \int_{-1}^1 \frac{f(x) \, dx}{\sqrt{1-x^2}} \). Find weights and nodes for the 32-point quadrature rule that maximizes the degree of exactness. What will be the degree of exactness of this rule?
 *Hint: to determine weights, find Chebyshev interpolant for \(f(x) \). Then observe that \(I(f) = I(f \cdot 1) = I(f \cdot T_0) \).

These concepts/formulas might be useful:

- Modulus of continuity \(\omega(\delta) = \sup_{x_1, x_2 \in [a,b], \ |x_1-x_2| < \delta} |f(x_1) - f(x_2)| \).
- Euler-Maclaurin formula for \(f \in C^{2m+2}[x_0, x_n] \):
 \[
 \int_{x_0}^{x_n} f(x) \, dx = T_n(f) + \sum_{i=1}^{m} \frac{B_{2i}}{(2i)!} h^{2i} (f^{(2i-1)}(x_0) - f^{(2i-1)}(x_n)) - \frac{B_{2m+2}}{(2m+2)!} (x_n - x_0) h^{2m+2} f^{(2m+2)}(\zeta).
 \]
- Simpson’s rule: \(S(f) = \frac{b-a}{6} \left(f(a) + f \left(\frac{a+b}{2} \right) + f(b) \right) \), \(E_S(f) = -\frac{15}{128} \left(\frac{b-a}{2} \right)^5 f^{(4)}(\zeta) \).
- Trapezoidal rule: \(T(f) = \frac{b-a}{2} \left(f(a) + f(b) \right) \), \(E_T(f) = -\frac{1}{12} (b-a)^3 f^{(2)}(\zeta) \).
- \(N \)-point Chebyshev interpolation: \(P_{N-1}(x) = \frac{\sin((N-1)\phi)}{\sin(\phi)} + \sum_{i=1}^{N-1} c_i T_i(x) \).
- Orthogonality relationship for Chebyshev polynomials: \(\langle T_k, T_j \rangle = 0 \), if \(k \neq j \); \(= \frac{\pi}{2} \) if \(k = j \neq 0 \); \(= \pi \) if \(k = j = 0 \).