1. Fix $C > 0$, and let K_C denote the subset of $L^2(\mathbb{R}, m)$, m denoting the Lebesgue measure, consisting of functions satisfying
\[
\int_{\mathbb{R}} |f(x)|dm(x) \leq C.
\]
(i.) Show that K_C is closed in $L^2(\mathbb{R}, m)$.
(ii.) Using the parallelogram law, show that for any $f \in L^2(\mathbb{R}, m)$, there exists a unique $f_C \in K_C$ so that
\[
\|f - f_C\|_2 = \inf\{\|g - f\|_2 : g \in K_C\}
\]
and then show that $\lim_{C \to \infty} f_C = f$ in $L^2(\mathbb{R}, m)$.

2. (a) Show that if f is Lebesgue integrable then the set \{\(x : f(x) \neq 0\}\} is a σ–finite set.
(b) Show that if f is Lebesgue integrable and positive a.e. on a Lebesgue measurable set E, and if
\[
\int_E f dm = 0, \text{ then } m(E) = 0.
\]

3. Let m be the Lebesgue measure on $(0, \infty)$. Suppose that $(x^p + \frac{1}{x^p})f \in L^2((0, \infty), dm)$, where $p > 1/2$. Show that $f \in L^1((0, \infty), dm)$.

4. (a) Prove that for any Lebesgue integrable functions f and g,
\[
0 \leq |f(x) - g(x)| - |f(x)| + |g(x)| \leq 2|g(x)| \quad a.e.
\]
(b) Let m denotes the Lebesgue measure on \mathbb{R}. Suppose that \{\(f_n\)\} is a sequence in $L^1(\mathbb{R}, dm)$ with $\|f_n\|_1 \leq 1$ for all n and
\[
\lim_{n \to \infty} f_n(x) = f(x) \quad a.e.
\]
Prove that in this case
\[
\lim_{n \to \infty} (\|f - f_n\|_1 - \|f_n\|_1 + \|f\|_1) = 0.
\]
(c) Suppose, in addition to the assumptions made in (b), that $f_n(x) \geq 0$ a.e. for all n, and
\[
\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) dm = \int_{\mathbb{R}} f(x) dm
\]
Prove that in this case
\[
\lim_{n \to \infty} \|f_n - f\|_1 = 0
\]

5. Guess the limit as $n \to \infty$ of
\[
\int_0^n (1 + x/n)^n e^{-2x} dx.
\]
Prove your guess is correct.

6. For $f \in L^2([0, 1])$, define a measurable function Vf by
\[
Vf(x) = \int_0^x f(t) dt.
\]
(a) Show that \(Vf \in L^2([0, 1]) \) and that \(\|Vf\|_2 \leq \frac{1}{2} \|f\|_2 \).

(b) Suppose \(f_n \in L^2([0, 1]) \) and \(\|f_n\|_2 \leq 1 \) for all \(n \). Prove that \(\{Vf_n\} \) has a convergent subsequence with respect to the \(L^2 \) norm.

7. Fix \(f \in L^1(\mathbb{R}, m) \) where \(m \) is the Lebesgue measure on \(\mathbb{R} \), and define \(F(x) = \int_{\mathbb{R}} f(t) \frac{\sin xt}{t} dt \).

(a) Prove that \(F \) is differentiable on \(\mathbb{R} \), and find \(F' \).

(b) Is \(F \) absolutely continuous on each compact subinterval of \(\mathbb{R} \)?

8. Let \(\{f_n\} \) be a sequence of Lebesgue measurable functions on \([0, 1]\). Suppose that

\[0 \leq f_n \leq 1, \quad \text{for all} \quad n \quad \text{and} \quad \lim_{n \to \infty} f_n = c \quad \text{in measure.} \]

Prove that

\[\lim_{n \to \infty} \int_0^1 (1 - \frac{1}{n})^n f_n dm = e^{-c}. \]

9. Produce an explicit example of a continuous function of two variable \(x \geq 1, \ t \geq 1 \), such that

\[\int_1^\infty \int_1^\infty f(x, t)dx dt \neq \int_1^\infty \int_1^\infty f(x, t)dt dx \]

although both integrals exist separately.

10. Solve the following problems from the textbook. 5.8, 5.11, .5.14, 5.48, 5.54.

11. Let \(m \) denote the Lebesgue measure on \([0, 1]\). Let \(\{f_n\}_{n \in \mathbb{N}} \) be a sequence of Lebesgue measurable functions defined on \([0, 1]\) such that for each \(n \geq 1 \), \(0 \leq f_n \leq M \) for a positive constant \(M \). Moreover, assume that \(\|f_n\|_1 = \int_0^1 f_n(x) dm(x) = 1 \) for all \(n \geq 1 \). Consider a sequence \(\{a_n\} \) such that \(a_n \geq 0 \) for all \(n \geq 1 \), and assume that \(\sum_{n=1}^{\infty} a_n = \infty \).

a. State Egoroff’s theorem.

b. Prove that there exists a subset \(A \) of positive measure in \([0, 1]\) such that \(\sum_{n=1}^{\infty} a_n f_n(x) = \infty \) for each \(x \in A \).

12. Fix positive real numbers \(p, q, a \), satisfying \(1 \leq p < q < \infty \) (there is no condition on \(a \) except \(a > 0 \)), and give the interval \([0, a]\) the usual Lebesgue measure (of total mass \(a \)). Let \(\|\|_p \) and \(\|\|_q \) denote the norms for \(L^p([0, a]) \) and for \(L^q([0, a]) \), respectively.

a. Show that there is a constant \(C_a > 0 \) such that if \(f \in L^q([0, a]) \), then \(f \in L^p([0, a]) \), and \(\|f\|_p \leq C_a \|f\|_q \). Find the minimal value of \(C_a \), and show that it cannot be improved.

b. Show that \(C_a \to \infty \) as \(a \to \infty \).

c. Regardless of the value of \(a > 0 \), show that there is NO constant \(C > 0 \) such that if

\[f \in L^p([0, a]) \cap L^q([0, a]) \]

then \(\|f\|_q \leq C \|f\|_p \).
13. Assume that \(n \geq 1 \) is an integer, and let \(f \in \bigcap_{n=1}^{\infty} L^n([0, 1]) \). Prove that if \(\sum_{n=1}^{\infty} \|f\|_{L^n([0, 1])} < \infty \), then \(f = 0 \) a. e.

14. Let \(f \in L^1(\mathbb{R}) \).
 (a) Determine
 \[
 \lim_{x \to 0} \int_{\mathbb{R}} |f(t + x) + f(t)| \, dt.
 \]
 (b) Determine
 \[
 \lim_{x \to \infty} \int_{\mathbb{R}} |f(t + x) + f(t)| \, dt.
 \]

15. Let \(f \in AC[0, 1] \) and \(f > 0 \). Prove that \(1/f \in AC[0, 1] \).

16. Let \(f \in L^p(\mathbb{R}) \), \(1 \leq p < \infty \), \(\alpha > 0 \), and define
 \[
 E_{\alpha}(f) = \{ x \in \mathbb{R} : |f(x)| > \alpha \}.
 \]
 (i) Show that \(E_{\alpha} \) has finite Lebesgue measure.
 (ii) Use (i) to show that every \(f \in L^p(\mathbb{R}) \), \(1 \leq p \leq 2 \), can be decomposed as \(f = f_1 + f_2 \) where \(f_1 \in L^1(\mathbb{R}) \) and \(f_2 \in L^2(\mathbb{R}) \).

17. Let \(\{f_n\} \) be a sequence of measurable functions which converges a.e. to \(f \) on \(\mathbb{R} \), and suppose there exists \(g \in L^2(\mathbb{R}) \) such that for all \(n \geq 1 \) \(|f_n| \leq g \) a.e. on \(\mathbb{R} \).
 Given \(\epsilon > 0 \), prove that there is a measurable subset \(A \subset \mathbb{R} \) such that \(m(A) < \epsilon \) and \(f_n \to f \) uniformly on \(A^c \).

18. Let \(\{A_n\}_{n \geq 1} \) be a sequence of Lebesgue measurable subsets of \([0, 1]\). Assume that 1 is a limit point of the sequence \(\{m(A_n)\}_{n \geq 1} \) where \(m \) denotes the Lebesgue measure on \([0, 1]\). Prove that there exists a subsequence \(A_{n_k} \) such that
 \[
 m(\cap_{k=1}^{\infty} A_{n_k}) > 0.
 \]

19. Let \(f, f' \in L^1(\mathbb{R}) \) and assume that \(f \) is absolutely continuous on each bounded interval \(I \) in \(\mathbb{R} \). Prove that
 \[
 \int_{-\infty}^{\infty} f'(x) \, dx = 0.
 \]

20. Given \(a < b \), denote by \(m \) the Lebesgue measure on \([a, b]\). Let \(f \) be a positive and Lebesgue measurable function defined on \([a, b]\) such that
 \[
 f \in L^r([a, b], dm) = \{ f : [a, b] \to (0, \infty) : \int_{a}^{b} f(x)^r \, dx < \infty \}
 \]
 for some \(r > 0 \).
 a. Show that \(f \in L^s([a, b], dm) \) for each \(0 < s \leq r \).
 b. Show that \(\lim_{s \to 0^+} \int_{a}^{b} f(x)^s \, dx = b - a \) and conclude that
 \[
 \lim_{s \to 0^+} \left(\int_{a}^{b} f(x)^s \, dx \right)^{1/s} = \infty \text{ if } b - a > 1
 \]
and

\[\lim_{s \to 0^+} \left(\int_a^b f(x)^s \, dx \right)^{1/s} = 0 \text{ if } b - a < 1. \]