1) The goal of this problem is to construct a non-measurable (in the sense of Lebesgue) subset \(P \subset (0, 1) \).

Consider the following relation for \(x, y \in (0, 1) \), \(x \sim y \) if and only if \(x - y \in \mathbb{Q} \).

a) Verify that \(\sim \) is an equivalence relation on \((0, 1)\).

b) For each equivalence class \(C \) of \(\sim \), choose a representative \(y \in (0, 1) \), and let \(P \) be the collection of all such \(y \). (Note that \(P \) is well defined by the Axiom of Choice (see page 76 of the textbook)). Let \(\{r_n\}_{n=1}^{\infty} = (-1, 1) \cap \mathbb{Q} \), and define \(P_n = r_n + P \) for each \(n \geq 1 \).

b.1 Prove that \(P_n \cap P_m = \emptyset \) if \(m \neq n \).

b.2 Prove that \((0, 1) \subset \bigcup_{n=1}^{\infty} P_n \subset (-1, 2)\).

b.3 Prove that \(m^*(P_n) = m^*(P) \) for each \(n \geq 1 \), where \(m^* \) is the Lebesgue outer measure.

c) Conclude that \(P \) is not (Lebesgue) measurable. Is \(P \) countable?

2) Let \(E \subset \mathbb{R} \) be Lebesgue measurable.

a.1 Prove that if \(E \subset P \) where \(P \) is the set constructed in Problem 1), then \(m(E) = 0 \).

a.2 Assume that \(m(E) > 0 \). Prove that there exists \(S \subset E \) with \(S \) non (Lebesgue) measurable. [Hint: First prove that the statement will follow if it can be proved for every subset \(E \) of \((0, 1)\).]

3) Solve the following problems from the textbook. 2.3 c–e; 2.6, 2.15, 2.17, 2.18. 2.19. 2.20.