2.3 Limit rules and examples

Theorem 2.3.1. If \(\lim_{x \to a} f(x) \) and \(\lim_{x \to a} g(x) \) exist, then \(\lim_{x \to a} \left(f(x) + g(x) \right) \), \(\lim_{x \to a} \left(c f(x) \right) \), \(\lim_{x \to a} \left(f(x) - g(x) \right) \), \(\lim_{x \to a} \left(f(x) \cdot g(x) \right) \), exist and

1. \(\lim_{x \to a} \left(f(x) + g(x) \right) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) \), \(\lim_{x \to a} c f(x) = c \lim_{x \to a} f(x) \),
2. \(\lim_{x \to a} \left(f(x) - g(x) \right) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x) \), \(\lim_{x \to a} \left(f(x) \cdot g(x) \right) = \lim_{x \to a} f(x) \lim_{x \to a} g(x) \).
3. If in addition, \(\lim_{x \to a} g(x) \neq 0 \), then \(\lim_{x \to a} \frac{f(x)}{g(x)} \) exists and \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \).

Remark 2.3.1. If the limits of \(f_1, f_2, \ldots, f_n \) at \(a \) all exist, then so is the limit of

1. \(f_1 + f_2 + \cdots + f_n \) exists and,
 \[
 \lim_{x \to a} (f_1 + f_2 + \cdots + f_n)(x) = \lim_{x \to a} f_1(x) + \lim_{x \to a} f_2(x) + \cdots + \lim_{x \to a} f_n(x);
 \]
2. and \(f_1 f_2 f_3 \ldots f_n \) exists, and
 \[
 \lim_{x \to a} (f_1 f_2 \cdots f_n)(x) = \lim_{x \to a} f_1(x) \lim_{x \to a} f_2(x) \cdots \lim_{x \to a} f_n(x).
 \]

Consequently, if \(f \) is a polynomial, then for each real number \(a \), \(\lim_{x \to a} f(x) \) exists and \(\lim_{x \to a} f(x) = f(a) \). If \(\frac{f(x)}{g(x)} \) is a rational function and \(\lim_{x \to a} g(x) = g(a) \neq 0 \), then the limit of \(\frac{f(x)}{g(x)} \) at \(a \) exists and \(\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{f(a)}{g(a)} \).

Example 2.3.1. Justify why each of these limits exist and evaluate them: \(\lim_{x \to 2} (2x^2 - 5x + 7|x|) \), \(\lim_{x \to \sqrt[3]{2}} (x^3 + 3)(-\sqrt[3]{2}x^3 + 1) \), \(\lim_{x \to 1} \frac{x^7}{x^2 - 2x + 3} \).

1. If \(n \) is a positive integer, and \(a \) is a non zero number, then \(\lim_{x \to a} \frac{1}{x^n} = \frac{1}{a^n} \).
2. If \(a \) is a real number and \(r \) is any rational number than \(\lim_{x \to a} x^r = a^r \).
3. In particular \(\lim_{n \to \infty} \sqrt[n]{x} = \sqrt[n]{a} \) for all odd integer \(n \) and all real number \(a \).
 Similarly, \(\lim_{n \to \infty} \sqrt[n]{x} = \sqrt[n]{a} \) for all even integer \(n \) and all real number \(a > 0 \).
4. \(\lim_{x \to a} e^x = e^a \) for all real \(a \).
5. \(\lim_{x \to a} \ln x = \ln a \) for all \(a > 0 \).
6. \(\lim_{x \to 0} \sin x = 0 \), \(\lim_{x \to 0} \cos x = 1 \).

Definition 2.3.1. A function \(f \) defined on an open interval containing a number \(a \) such that \(\lim_{x \to a} f(x) = f(a) \) is said to be **continuous at** \(a \).
Theorem 2.3.2 (Squeezing theorem). Assume that \(f(x) \leq g(x) \leq h(x) \) for all \(x \) in some open interval about \(a \) except possibly at \(a \) itself. If \(\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L \), then \(\lim_{x \to a} g(x) \) exists and \(\lim_{x \to a} g(x) = L \).

Example 2.3.2. Prove that \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \), and that \(\lim_{x \to 0} \frac{\cos x - 1}{x} = 0 \).

Theorem 2.3.3 (Substitution rule). If \(\lim_{x \to a} f(x) = c \), then \(\lim_{x \to a} g(f(x)) = \lim_{y \to c} g(y) \). In particular, if \(f \) is continuous at \(a \) and \(g \) is continuous at \(f(a) \), then \(g(f(x)) \) is continuous at \(a \) and \(\lim_{x \to a} g(f(x)) = g(f(a)) \).

Evaluate \(\lim_{x \to 0} \cos \frac{2x^2 + x + \pi}{4} \).

2.4 One-sided and infinite limits

Definition 2.4.1. Let \(f \) be defined on some open interval \((c, a)\). A number \(L \) is the limit of \(f(x) \) as \(x \) approaches \(a \) from the left (or the left-hand limit of \(f \) at \(a \)) if for all \(\epsilon > 0 \) there is \(\delta > 0 \) such that if \(a - \delta < x < a \) then \(|f(x) - L| < \epsilon \).

In this case we write \(\lim_{x \to a^-} f(x) = L \),

and we say that the left-hand limit of \(f \) at \(a \) exists, or that \(\lim_{x \to a^-} f(x) \) exists.

Let \(f \) be defined on some open interval \((a, b)\). A number \(L \) is the limit of \(f(x) \) as \(x \) approaches \(a \) from the right (or the right-hand limit of \(f \) at \(a \)) if for all \(\epsilon > 0 \) there is \(\delta > 0 \) such that if \(a < x < a + \delta \) then \(|f(x) - L| < \epsilon \).

In this case we write \(\lim_{x \to a^+} f(x) = L \),

and we say that the right-hand limit of \(f \) at \(a \) exists, or that \(\lim_{x \to a^+} f(x) \) exists.

Example 2.4.1. Evaluate the following limits

1. \(\lim_{x \to 2^-} \frac{x^3 - 4x}{x^2 - 2} \)
2. \(\lim_{x \to 5^+} \frac{|x - 5|}{x - 5} \)
3. \(\lim_{x \to 3} \sqrt{x^2 - 9} \)

Theorem 2.4.1. Let \(f \) be defined on an open interval about \(a \), except possibly at \(a \) itself. Then \(\lim_{x \to a} f(x) \) exists if and only if both one-sided limits, \(\lim_{x \to a^-} f(x) \) and \(\lim_{x \to a^+} f(x) \) exist and \(\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \). In this case, \(\lim_{x \to a} f(x) = \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \).