Study Outline for Exam 2

Second Order Linear Differential Equations:

\[y'' + p(t)y' + q(t)y = r(t) \quad [*] \text{ (Inhomogeneous)} \]
\[y'' + p(t)y' + q(t)y = 0 \quad [**] \text{ (Homogeneous)} \]

where \(p, q \) and \(g \) are continuous functions on an interval.

1. Existence and Uniqueness of solutions to IVP:

\[y(t_0) = y_0, y'(t_0) = y'_0. \quad [***] \]

For any \(t_0 \) in the interval on which the coeff fctns are continuous, there is exactly one solution of \([*]\) satisfying the initial conditions \([***]\). The same is true for \([**]\).

2. The set of solutions to \([**]\) is a two-dimensional vector space, meaning that there are two linearly independent (neither is a multiple of the other) solutions so that EVERY solution is a linear combination of those two.

Two solutions \(y_1 \) and \(y_2 \) are linearly independent and so form a basis for the solution set exactly when the Wronskian, which is given by the following formula and enjoys the property that it is either identically zero or never zero:

\[W = y_1 y'_2 - y'_1 y_2 \]

is NOT zero.

3. Constant Coefficient Homogeneous Equations

\[ay'' + by' + cy = 0. \]

(a) The characteristic polynomial is

\[ar^2 + br + c; \]

Its roots determine the solutions.

Distinct Real Roots: \(r_1, r_2 \) give

\[e^{r_1 t}, e^{r_2 t}. \]

Complex Conjugate Roots: \(\alpha + i \beta \) give

\[e^{(\alpha t)\cos(\beta t)}, e^{(\alpha t)\sin(\beta t)}. \]

Repeated Real Root: \(r_0 \) gives

\[e^{r_0 t}, te^{r_0 t}. \]
4. Reduction of Order (or Order Reduction)

If $y_1(t)$ is a solution of $[**]$, then one gets a second linearly independent solution by substituting

$$y_2(t) = u(t)y_1(t)$$

into $[**]$, noting that the result does not depend on u, then solving the resulting differential equation for u' and then integrating to get u.

5. Inhomogeneous Equations

If the inhomogeneous term $r(t)$ is a sum of functions, then find a particular solution for each summand and then add them together to get a particular solution for the full equation. We have the following methods:

(a) Undetermined Coefficients (only for constant coeff eqns). When the inhomogeneous term is a product of a polynomial, exponential and a sinusoidal. Try the exact same kind of candidate for a solution using unknown coeffs; plug into the diff eqn to determine the coeffs. Don't forget to multiply the 'candidate' by t^s, where s is the smallest non-negative integer required to guarantee that no term in the candidate is a solution of the homogeneous eqn.

(b) Green Function (also for const coeff eqns). Select $g(t)$ to be the unique function that solves the homogeneous eqn and satisfies $g(0)=0$, $g'(0)=1$. Then a particular solution of the inhomog. eqn is given by

$$\int_{t_0}^t g(t-s)r(s) \, ds$$

(c) Variation of Parameters (requires eqn to be normalized, but not const coeff). If y_1 and y_2 are lin ind sols of the homog eqn, then

$$-y_1(t) \int^t y_2(s)g(s)/W(s) \, ds + y_2(t) \int^t y_1(s)g(s)/W(s) \, ds$$

is a sol of the inhomog eqn.

6. Mass-Spring System

Unforced & Damped or Undamped; i.e.,

$$mu'' + ku = 0 \text{ or } mu'' + \gamma u' + ku = 0.$$

yielding harmonic motion or a damped oscillation accordingly.

Forced: Resonance and Beats; i.e.,

$$mu'' + ku = R\cos(\omega t), \ \omega_0 = \sqrt{k/m}.$$

Resonance occurs for $\omega = \omega_0$; Beats for ω very close to ω_0.

7. Finally, you may be expected to interpret a Matlab session involving some qualitative analysis of a linear, non-constant coeff 2nd order ODE.