Theorem: \(\text{lcm}(a, b) \times \text{gcd}(a, b) = ab \) for any positive integers \(a, b \).

Proof: First a

Lemma: If \(m > 0 \), \(\text{lcm}(ma, mb) = m \times \text{lcm}(a, b) \).

Since \(\text{lcm}(ma, mb) \) is a multiple of \(ma \), which is a multiple of \(m \), we have \(m \mid \text{lcm}(ma, mb) \).

Let \(mh_1 = \text{lcm}(ma, mb) \), and set \(h_2 = \text{lcm}(a, b) \).

Then \(ma \mid mh_1 \Rightarrow a \mid h_1 \) and \(mb \mid mh_1 \Rightarrow b \mid h_1 \).

That says \(h_1 \) is a common multiple of \(a \) and \(b \); but \(h_2 \) is the least common multiple, so

\[h_1 \geq h_2. \quad (1) \]

Next, \(a \mid h_2 \Rightarrow am \mid mh_2 \) and \(b \mid h_2 \Rightarrow bm \mid mh_2 \).

Since \(mh_2 \) is a common multiple of \(ma \) and \(mb \), and \(mh_1 = \text{lcm}(ma, mb) \), we have \(mh_2 \geq mh_1 \), i.e.

\[h_2 \geq h_1. \quad (2) \]

From (1) and (2), \(h_1 = h_2 \).

Therefore, \(\text{lcm}(ma, mb) = mh_1 = mh_2 = m \times \text{lcm}(a, b) \); proving the Lemma.

Conclusion of Proof of Theorem:

Let \(g = \text{gcd}(a, b) \). Since \(g \mid a, g \mid b \), let \(a = gc \) and \(b = gd \).

From a result in the text, \(\text{gcd}(c, d) = \text{gcd}(a/g, b/g) = 1 \).

Now we will prove that \(\text{lcm}(c, d) = cd \). \((3)\)

Since \(c \mid \text{lcm}(c, d) \), let \(\text{lcm}(c, d) = kc \).

Since \(d \mid kc \) and \(\text{gcd}(c, d) = 1 \), \(d \mid k \) and so \(dc \leq kc \).

However, \(kc \) is the least common multiple and \(dc \) is a common multiple, so \(kc \leq dc \).

Hence \(kc = dc \), i.e. \(\text{lcm}(c, d) = cd \).

Finally, using the Lemma and (3), we have:

\[\text{lcm}(a, b) \times \text{gcd}(a, b) = \text{lcm}(gc, gd) \times g = g \times \text{lcm}(c, d) \times g = g \text{gcd}(g) = (gc)(gd) = ab. \]

QED