Analyzing Task Driven Learning Algorithms
Mid Year Status

Mike Pekala

December 6, 2011

Advisor: Prof. Doron Levy (dlevy at math.umd.edu)
UMD Dept. of Mathematics & Center for Scientific Computation and
Mathematical Modeling (CSCAMM)
Today

1. Overview and Status
 - Overview
 - Schedule

2. Least Angle Regression
 - Geometric View
 - Rank 1 Updating
 - Validation

3. Dictionary Learning
 - Preliminary Results

4. Summary & Next Steps
Overview

The underlying notion of *sparse coding* is that, in many domains, data vectors can be concisely represented as a sparse linear combination of basis elements or dictionary atoms. Recent results suggest that, for many tasks, performance improvements can be obtained by explicitly *learning* dictionaries directly from the data (vs. using predefined dictionaries, such as wavelets). Further results suggest that additional gains are possible by *jointly optimizing* the dictionary for both the data and the task (e.g. classification, denoising).

Consider the Task Driven Learning algorithm [Mairal et al., 2010]:

- **Outer loop:** Stochastic gradient descent to learn dictionary atoms, classification weight vector. We talked about this at the kickoff.

- **Inner loop:** Sparse approximation via penalized least squares. Authors use the Least Angle Regression (LARS) algorithm for this purpose. Vague at kickoff - we’ll talk about this a bit more today.
Schedule and Milestones

Schedule and milestones from the kickoff:

- **Phase I: Algorithm development (Sept 23 - Jan 15)**
 - Phase Ia: Implement LARS (Sept 23 ~ Oct 24)
 - ✓ Milestone: LARS code available
 - Phase Ib: Validate LARS (Oct 24 ~ Nov 14)
 - ✓ Milestone: results on diabetes data and hand-crafted problems
 - Phase Ic: Implement SGD framework (Nov 14 ~ Dec 15)
 - 90% Milestone: Initial SGD code available
 - Phase Id: Validate SGD framework (Dec 15 ~ Jan 15)
 - 25% Milestone: TDDL results on MNIST/USPS

- **Phase II: Analysis on new data sets (Jan 15 - May 1)**
 - Milestone: Preliminary results on selected dataset (~ Mar 1)
 - Milestone: Final report and presentation (~ May 1)
Today

1. Overview and Status
 - Overview
 - Schedule

2. Least Angle Regression
 - Geometric View
 - Rank 1 Updating
 - Validation

3. Dictionary Learning
 - Preliminary Results

4. Summary & Next Steps
Problem: Constrained Least Squares

Recall the Lasso: given \(X = [x_1, \ldots, x_m] \in \mathbb{R}^{n \times m}, t \in \mathbb{R}_+ \), solve:

\[
\min_{\beta} ||y - X\beta||_2^2 \quad s.t. \quad ||\beta||_1 \leq t
\]

which has an equivalent unconstrained formulation:

\[
\min_{\beta} ||y - X\beta||_2^2 + \lambda ||\beta||_1
\]

for some scalar \(\lambda \geq 0 \). The \(L_1 \) penalty improves upon OLS by introducing parsimony (feature selection) and regularization (improved generality).

There are multiple ways to solve this problem:

1. Directly, via convex optimization (can be expensive)
2. Iterative techniques
 - Forward selection (“matching pursuit”), forward stagewise, others.
 - Least Angle Regression (LARS) [Efron et al., 2004]
Visualizing the algorithm

Geometry when $m = 2$

Column space of $X = [x_1 \ x_2]$
Ordinary Least Squares (OLS)

\[\hat{\beta} = \arg \min_\beta \| y - X\beta \|_2^2 \]

\[\bar{y}_2 = X\hat{\beta} = Py \]
Least Angle Regression (LARS)

\[\hat{\beta} = \arg \min_{\beta} \| y - X \beta \|_2^2 \]

subject to \(\| \beta \|_1 \leq t \)

Active set \(A = \{ \} \)
\(\beta_0 = 0 \)

Assume \(\| \hat{\beta}_{OLS} \|_1 > t \)
Least Angle Regression (LARS)

\[\hat{\beta} = \arg \min_{\beta} \| y - X\beta \|^2_2 \]

s.t. \(\| \beta \|_1 \leq t \)

Choose initial direction \(u_1 \) (covariate most correlated with \(y \))
Least Angle Regression (LARS)

\[\hat{\beta} = \arg \min_{\beta} ||y - X\beta||_2^2 \]

s.t. \(||\beta||_1 \leq t \)

\[\gamma_1 u_1 = \hat{\mu}_1 \]

Move along \(u_1 \) until \(x_2 \) is equally correlated

\[A = \{ x_1 \} \]
Least Angle Regression (LARS)

\[\hat{\beta} = \arg \min_{\beta} ||y - X\beta||^2_2 \]

s.t. \[||\beta||_1 \leq t \]

Identify equiangular vector \(u_2 \)

\[A = \{ x_1, x_2 \} \]
Least Angle Regression (LARS)

$$\hat{\beta} = \arg\min_{\beta} ||y - X\beta||_2^2$$

$$s.t. \ ||\beta||_1 \leq t$$

$$\mathcal{A} = \{x_1, x_2\}$$

$$\hat{\mu}_2 = \hat{\mu}_1 + \gamma_2 u_2$$

Move along equiangular direction u_2
Relationship to OLS

LARS solutions at step k related to OLS solution of $||y - X_k\beta||^2_2$
Some Algorithm Properties

Full details in [Efron et al., 2004]

- (2.22) Successive LARS estimates $\hat{\mu}_k$ always approach but never reach the OLS estimate \bar{y}_k (except maybe on the final iteration).
Some Algorithm Properties
Full details in [Efron et al., 2004]

- (2.22) Successive LARS estimates $\hat{\mu}_k$ always approach but never reach the OLS estimate \tilde{y}_k (except maybe on the final iteration).
- (Theorem 1) With a small modification to the LARS step size calculation, and assuming covariates are added/removed one at a time from the active set, the complete LARS solution path yields all Lasso solutions.

[Theorem 1] With a change to the covariate selection rule, LARS can be modified to solve the Positive Lasso problem:

$$
\min_{\beta} \|y - X\beta\|_2^2 \quad \text{s.t.} \quad \|\beta\|_1 \leq t_0 \leq \beta_j
$$

(Sec. 7) The cost of LARS is comparable to that of a least squares fit on m variables. The LARS sequence incrementally generates a Cholesky factorization of X^TX in a very specific order.
Some Algorithm Properties
Full details in [Efron et al., 2004]

- **(2.22)** Successive LARS estimates $\hat{\mu}_k$ always approach but never reach the OLS estimate \bar{y}_k (except maybe on the final iteration).
- **(Theorem 1)** With a small modification to the LARS step size calculation, and assuming covariates are added/removed one at a time from the active set, the complete LARS solution path yields all Lasso solutions.
- **(Sec. 3.1)** With a change to the covariate selection rule, LARS can be modified to solve the Positive Lasso problem:

$$
\min_{\beta} \| y - X \beta \|^2_2 \quad \text{s.t.} \quad \| \beta \|_1 \leq t \\
0 \leq \beta_j
$$
Some Algorithm Properties

Full details in [Efron et al., 2004]

- (2.22) Successive LARS estimates $\hat{\mu}_k$ always approach but never reach the OLS estimate \bar{y}_k (except maybe on the final iteration).
- (Theorem 1) With a small modification to the LARS step size calculation, and assuming covariates are added/removed one at a time from the active set, the complete LARS solution path yields all Lasso solutions.
- (Sec. 3.1) With a change to the covariate selection rule, LARS can be modified to solve the Positive Lasso problem:

$$\min_{\beta} \| y - X\beta \|^2_2 \quad s.t. \|\beta\|_1 \leq t \quad 0 \leq \beta_j$$

- (Sec. 7) The cost of LARS is comparable to that of a least squares fit on m variables. The LARS sequence incrementally generates a Cholesky factorization of X^TX in a very specific order.
LARS & Cholesky Decomposition

At iteration k, to determine the equiangular vector u_k, one must invert the $k \times k$ matrix $G_k := X_k^T X_k$

Well, don’t really invert. Generate Cholesky decomposition $G_k = R^T R$ and solve triangular linear systems.

(Recall: G_k symm. pos. semi-definite and s.p.d. if X_k is full rank):

$$\forall z \in \mathbb{R}^k, z \neq 0, \quad z^T G_k z = z^T X_k^T X_k z = (X_k z)^T (X_k z) = \|X_k z\|_2^2 \geq 0$$

Could call `chol(G_k)` each iteration, but there’s a more efficient way...
QR Rank 1 Updates
(Golub and Van Loan [1996, sec. 12.5.2])

Recall: $A = QR$, then $A^T A = (R^T Q^T)(QR) = R^T R$

Suppose we have Q, R, z and want the QR decomposition of:

$$\tilde{A} = [a_1, \ldots, a_k, z, a_{k+1} \ldots, a_n]$$

Let $w := Q^T z$. Then,

$$Q^T \tilde{A} = [Q^T a_1, \ldots, Q^T a_k, w, Q^T a_{k+1}, \ldots Q^T a_n]$$

e.g.

$$\begin{bmatrix}
\times & \times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & \times & 0 & \times \\
0 & 0 & 0 & \times & 0 & 0 \\
0 & 0 & 0 & \times & 0 & 0 \\
\end{bmatrix}$$
QR Rank 1 Updates
(Golub and Van Loan [1996, sec. 12.5.2])

Use Given’s rotations to remove the “spike” introduced by w:

\[
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \\
0 & 0 & \times & \times & \times & \\
0 & 0 & 0 & \times & \times & \\
0 & 0 & 0 & \times & 0 & \times \\
0 & 0 & 0 & \times & 0 & 0 \\
0 & 0 & 0 & \times & 0 & 0 \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\times & \times & \times & \times & \times & \times \\
0 & \times & \times & \times & \times & \times \\
0 & 0 & \times & \times & \times & \times \\
0 & 0 & 0 & \times & \times & \times \\
0 & 0 & 0 & 0 & \times & \times \\
0 & 0 & 0 & 0 & 0 & \times \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

- Operation requires mn flops.
- Analogous approach to downdate R when removing a column.
- Matlab functions `qrinsert()`, `qrdelete()` (Octave has `cholupdate()`...).
- Ran into trouble with non-uniqueness of QR decomp; used:

\[
QR = QIR = QI_k^T I_k R
\]

to swap sign of $R_{k,k}$ (where I_k is ident. mat. w/ $I_{k,k} = -1$)
Validation: Diabetes Data Set

$m = 10, n = 442$; Compares well with Figure 1 in [Efron et al., 2004]. Also validated by comparing orthogonal designs with theoretical result.
Today

1. Overview and Status
 - Overview
 - Schedule

2. Least Angle Regression
 - Geometric View
 - Rank 1 Updating
 - Validation

3. Dictionary Learning
 - Preliminary Results

4. Summary & Next Steps
Warning:

- The following is preliminary - work in progress.
- No intelligent parameter selection, only looking at dictionary learning at the moment.
Atoms: LARS+LASSO

time=6230.27 (sec), m=30, nIters=1000, λ=0.01
Experiment: LARS+LASSO, USPS 5023

Num. atoms > 1e-4: 30

true digit

reconstruction

\[a_{28} = 2.632 \quad a_{16} = 1.662 \quad a_{29} = 1.571 \quad a_{11} = 1.438 \quad a_{5} = -1.276 \]

(0.12 %) (0.07 %) (0.07 %) (0.06 %) (0.06 %)
Atoms: LARS+LASSO-NN

\[\text{time} = 2435.80 \text{ (sec)}, \ m = 30, \ n\text{Iters} = 1000, \ \lambda = 0.01 \]
Experiment: LARS + LASSO-NN, USPS 5023

Num. atoms $> 1e-4$: 13

true digit

reconstruction

\[a_{27} = 2.520 \quad (0.20 \%) \]
\[a_{21} = 1.994 \quad (0.16 \%) \]
\[a_{28} = 1.882 \quad (0.15 \%) \]
\[a_{9} = 1.822 \quad (0.14 \%) \]
\[a_{8} = 1.270 \quad (0.10 \%) \]
Today

1. Overview and Status
 - Overview
 - Schedule

2. Least Angle Regression
 - Geometric View
 - Rank 1 Updating
 - Validation

3. Dictionary Learning
 - Preliminary Results

4. Summary & Next Steps
Summary

Progress

- Milestones met; currently on schedule.
- Also completed a few extra tasks not in the original plan (non-negative LARS, incremental Cholesky).

Near Term

- Finish Task Driven Learning Framework and validation
- On to hyperspectral data!

Optional Steps

- Parallel SGD (e.g. [Zinkevich et al., 2010])
Bibliography I

