(a) Let X be a commutative ring with 1, and let f be any element of X. Show that the multiplicative group of units of X is a subgroup of X. If f is invertible, prove that f^{-1} is also invertible.

(b) Let R be a commutative ring with 1. An element $r \in R$ is said to be nilpotent if there exists some positive integer n such that $r^n = 0$. Show that the set of nilpotent elements of R is a two-sided ideal of R. Prove that if n is invertible in R, then R is a domain.

(c) Let R be a commutative ring with 1. An element $r \in R$ is said to be nilpotent if there exists some positive integer n such that $r^n = 0$. Show that the set of nilpotent elements of R is a two-sided ideal of R. Prove that if n is invertible in R, then R is a domain.

(d) Let R be a commutative ring with 1. An element $r \in R$ is said to be nilpotent if there exists some positive integer n such that $r^n = 0$. Show that the set of nilpotent elements of R is a two-sided ideal of R. Prove that if n is invertible in R, then R is a domain.

(e) Let R be a commutative ring with 1. An element $r \in R$ is said to be nilpotent if there exists some positive integer n such that $r^n = 0$. Show that the set of nilpotent elements of R is a two-sided ideal of R. Prove that if n is invertible in R, then R is a domain.

(f) Let R be a commutative ring with 1. An element $r \in R$ is said to be nilpotent if there exists some positive integer n such that $r^n = 0$. Show that the set of nilpotent elements of R is a two-sided ideal of R. Prove that if n is invertible in R, then R is a domain.
6. Let G be a finite group and let $p: \mathbb{C} G \to \mathbb{C}$ be a group representation of G. Let N be the set of polynomials $f \in \mathbb{C}[x]$ such that $f(G) = 0$. Prove that all elements of $\mathbb{C}[x]/(f)$ are in the ideal of \mathbb{C} generated by f. Show that if f is an irreducible polynomial in $\mathbb{C}[x]$, then $\mathbb{C}[x]/(f)$ is a field.

Let $f(x) \in \mathbb{C}[x]$ be an irreducible polynomial. Let $\mathbb{C}[x]/(f)$ be the vector space of all polynomials in $\mathbb{C}[x]$ modulo (f). We claim that $\mathbb{C}[x]/(f)$ is a field.

(a) Show that $\mathbb{C}[x]/(f)$ is a vector space over \mathbb{C}.
(b) Show that $\mathbb{C}[x]/(f)$ is an integral domain.
(c) Show that $\mathbb{C}[x]/(f)$ is a field.

Let $f(x) \in \mathbb{C}[x]$ be an irreducible polynomial. Let $\mathbb{C}[x]/(f)$ be the vector space of all polynomials in $\mathbb{C}[x]$ modulo (f). We claim that $\mathbb{C}[x]/(f)$ is a field.

(a) Show that $\mathbb{C}[x]/(f)$ is a vector space over \mathbb{C}.
(b) Show that $\mathbb{C}[x]/(f)$ is an integral domain.
(c) Show that $\mathbb{C}[x]/(f)$ is a field.

Let $f(x) \in \mathbb{C}[x]$ be an irreducible polynomial. Let $\mathbb{C}[x]/(f)$ be the vector space of all polynomials in $\mathbb{C}[x]$ modulo (f). We claim that $\mathbb{C}[x]/(f)$ is a field.

(a) Show that $\mathbb{C}[x]/(f)$ is a vector space over \mathbb{C}.
(b) Show that $\mathbb{C}[x]/(f)$ is an integral domain.
(c) Show that $\mathbb{C}[x]/(f)$ is a field.
Since P is a point of accumulation of A, there exists a sequence (a_n) in A such that $a_n \to P$.

Now suppose $P \in \text{cl}(E \cup F)$. Since P is a point of F, there exists a sequence (b_n) in F such that $b_n \to P$.

Thus P is a point of accumulation of F. By the previous argument, there exists a sequence (c_n) in F such that $c_n \to P$.

Since P is a point of accumulation of both A and F, it is a point of accumulation of $A \cup F$. Therefore, P is a point of accumulation of E. Hence, E is dense in F.
If \(f \) is a polynomial with real coefficients, then any non-real complex root must come in conjugate pairs.

Let \(\alpha = a + bi \) be a complex root of \(f(x) = 0 \). Then \(\bar{\alpha} = a - bi \) is also a root of \(f(x) = 0 \).

So, \((x - \alpha)(x - \bar{\alpha}) = (x - a - bi)(x - a + bi) \) is a factor of \(f(x) \).}

In fact, \(f(x) = (x - \alpha)(x - \bar{\alpha})g(x) \), where \(g(x) \) is also a polynomial with real coefficients.

Therefore, if \(f(x) \) has a complex root, then it must have a real root as well.

Hence, \(f(x) \) must have \(n \) real roots, where \(n \) is the degree of \(f(x) \).
\[\text{(Note: This statement is not true for } n = 2) \]
\[p \quad \Rightarrow \quad q \quad \Rightarrow \quad \neg p \quad \lor \quad q \]

\[W = \left[\begin{array}{c} \frac{x^2}{c} \\ 0 \\ 1 \end{array} \right] \]

In the case where \(W \) is a positive definite matrix, we can rewrite the condition as follows:

\[P \rightarrow \neg P \]

Suppose \(P \) is not positive. Then the condition is not satisfied.

The only assumption with \(x \) in the equation is that \(x \) is also in the equation. But as we know:

\[p = x \quad \text{and} \quad \neg p = x \quad \text{for} \quad \neg p \]

\[\neg p = \neg p \quad \text{and} \quad p = \neg p \]

So if \(W \) has a non-zero eigenvalue \(\lambda \) in the equation.