CONTINUED ON PAGE 2

Let f be a polynomial in a commutative algebra A. Show that f is factorial.

Suppose that f is an algebraic integer domain. Show that f is a field. [Hint: Consider $\mathbb{Q}[x]/(f(x))$.]

If $\gamma \in \mathbb{C}$ and $\gamma \not\in \mathbb{R}$, then f is a commutative algebra that is not a polynomial algebra. If f is not a polynomial algebra, then f is factorial.

(a) Show that f is a field and f is an algebraic integer domain. [Hint: Consider $\mathbb{Q}[x]/(f(x))$.]

(b) Show that f is factorial. [Hint: $\mathbb{Q}[x]/(f(x))$ is a factorial domain.]

(c) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(d) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(e) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(f) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(g) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(h) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(i) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(j) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(k) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(l) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(m) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(n) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(o) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(p) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(q) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(r) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(s) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(t) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(u) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(v) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(w) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(x) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(y) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.

(z) For any non-zero element of $\mathbb{Q}[x]/(f(x))$, show that $\mathbb{Q}[x]/(f(x))$ is a factorial domain.
Let \mathbb{C} be the complex numbers. Show that if z is algebraic over \mathbb{Q} and α is algebraic over $\mathbb{Q}(z)$, then α is algebraic over \mathbb{Q}. Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be algebraic over \mathbb{Q}, and let β be algebraic over \mathbb{Q}. Show that $\alpha_1 + \beta, \alpha_2 + \beta, \ldots, \alpha_n + \beta$ are algebraic over \mathbb{Q}.
Chapter C

2m = k

Continuing this process to get G(m) which has order

claimant x of order 2^m - 2

so we can apply the same argument to get that it is odd and odd

call it G. Apply an argument to get that it is odd

(1)

By b) E is a subgroup of G of order 2^m and is normal in G.

And |G| = 2^m - 1

Note: [G: H] is even since the product of the odd permutations is odd.

(2)

There is only one non-trivial class of G/ H = [C; H] = 2

\[H = x^h \]

So \[x \in H \] as \[x \in H \] and \[x \in H \]

\[x \in H \]

(3) Let \(x^h \) and \(y^h \) represent the only non-trivial elements of \(G/ H \).

Since \(y^h \) is odd, so the product \(x \cdot y^h \) will have order \((2^m - 1) \) transpositions which is \(2^m - 1 \) transpositions.

(4)\((a_1, a_2, a_3, \ldots, a_n) \) is also decomposed into \((a_1 a_2 a_3 a_4 \ldots a_n, a_n a_{n-1} a_{n-2} \ldots a_1) \)

\(\chi^2 \) is a cycle in the permutation \(\chi \) in \(S_n \) of order 2.

Thus the orbit of \(\chi \) are the cycles of \(\gamma/\chi \), when \(\gamma \) is given by \(\chi \cdot \gamma \).

(5) C acts on \(G/ H \) by left multiplication.
To W in diagonalization.

So on further analysis, we get

rank $(K - 2I) < $ rank $(K - 2I)^2$

then least $\lambda = 1$

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\]

get

To find λ you get

The Jordan basis show that each when where $k = 1$

$$k = \begin{bmatrix} x & y \\ 0 & x \\ 0 & 0 \end{bmatrix}$$

which has λ.

\[N = (K - 2I)^N \times \text{certain} \times (K - 2I)^{-1} \times \text{certain} \]

then this induces another which which each the

Suppose there is a λ that induces λ and each λ.

If so there is one λ such that all Jordan blocks are λ.

λ.

Note: rank $(K - W)$ = rank $(K - N)^2$ and ϵ^L.

$\lambda = \begin{bmatrix} \lambda & \Omega \\ 0 & \lambda \\ 0 & 0 \end{bmatrix}$

where number is on the lower right.

\[\begin{bmatrix} x - \lambda & 0 \\ -1 & x - \lambda \end{bmatrix}
\]

form $(K - W)$ = rank $(K - N)^2$ and ϵ^L

rank $(K - W)$ = rank $(K - N)^2$ and ϵ^L

$\lambda = \begin{bmatrix} \lambda & \Omega \\ 0 & \lambda \\ 0 & 0 \end{bmatrix}$

the diagonal...

then λ = λ.

Suppose W is diagonalizable.
Let A be a principal ideal domain.

\[A/p \] is also a principal ideal domain. Let a be a generator of A/p.

For every irreducible element p in A/p, a cannot be a multiple of p.

Thus, A/p is a principal ideal domain.
\[(x \in \mathbb{C}, \text{ Re}\{x\} = 2) \Rightarrow \exists \lambda \in \mathbb{C} \text{ s.t. } x = \lambda + i \sqrt{3}, \forall \lambda \in \mathbb{C} \}\]

Theorem:

Let \(K = \mathbb{C}[x] \) and \(L = \mathbb{C}[x,y] \) be two algebraically closed fields. Then \(K \) is a field.

Proof:

Suppose \(\lambda \in \mathbb{C} \) and \(\lambda \neq 0 \). Then \(\frac{1}{\lambda} \in \mathbb{C} \) and \(\lambda + \frac{1}{\lambda} \in \mathbb{C}[x] \) by the fundamental theorem of algebra. Hence, \(K \) is a field.

Example:

Let \(\lambda = 2 \) and \(\lambda = 3 \). Then \(\frac{1}{\lambda} = \frac{1}{2} \) and \(\frac{1}{\lambda} = \frac{1}{3} \). Hence, \(\frac{1}{\lambda} \) is also in \(K \) for all \(\lambda \neq 0 \).
So there are no non-trivial elements \(x \in G \). If \(x = 0 \) then \(x = 0 \) and if \(x \neq 0 \), then
\[
\begin{align*}
\text{dim } \ker(\phi) & = 1 \quad \text{dim } \ker(\phi) \\
\text{dim } \text{image} \phi & = 1 \quad \text{dim } \text{image} \phi
\end{align*}
\]

So \(x = 0 \) and if \(\phi(\alpha) \) is not \(\alpha \), then \(\phi(\alpha) = \beta \) for some \(\beta \).

So \(\phi(x) = \phi(y) \) if and only if \(x = y \).

Let \(x = y \) be any element of \(G \). Then \(\phi(x) = \phi(y) \).

\[\text{Proof:} \quad \phi(x) = \phi(y) \iff x = y\]