CONTINUED ON NEXT PAGE

4. Show that I is not a maximal ideal of $\mathbb{R}[X]$.

5. Show that I is a prime ideal of $\mathbb{R}[X]$.

\{x \in \mathbb{R}[X] | \text{ord}(x) = 4\} = I$

Let R be a commutative ring with 1 and let P be a prime ideal of R. Let $R/P \cong \mathbb{R}$, where \mathbb{R} is a field. Then R is a principal ideal domain if and only if $R/P \cong \mathbb{R}$.

(b) Show that R is a Euclidean ring if and only if $R/P \cong \mathbb{R}$.

Let $f : R \to R$ be an endomorphism of R that is R-module. Let $\text{End}_R(R)$ be the set of all endomorphisms of R.

(c) Show that $\text{End}_R(R) \cong R^\times$, where R^\times is the group of units of R.

(d) Show that $\text{End}_R(R) \cong R^\times$ if and only if R is a principal ideal domain.

(e) Show that $\text{End}_R(R) \cong R^\times$ if and only if R is a field.

(f) Show that $\text{End}_R(R) \cong R^\times$ if and only if R is a Euclidean ring.

3. Let R be a commutative ring with 1 and let $m : R \to R$. Let m be a non-zero, non-invertible integer. Let $\mathbb{Z} \subseteq R$.

(a) Show that $\mathbb{Z} \subseteq \mathbb{R}$.

(b) Show that the set \mathbb{Z} is a subring of \mathbb{R}.

(c) Show that \mathbb{Z} is an integral domain.

(d) Show that \mathbb{Z} is a field.

(e) Show that \mathbb{Z} is a principal ideal domain.

(f) Show that \mathbb{Z} is a Euclidean ring.

2. Let M be an $n \times n$ matrix with complex entries such that $M^2 = \text{det}(M)I_n$.

(a) Show that M is similar to a diagonal matrix.

(b) Show that M is similar to a diagonal matrix with eigenvalues.

(c) Show that M is similar to a diagonal matrix with eigenvalues.

(d) Show that M is similar to a diagonal matrix with eigenvalues.

1. Let G be a non-abelian group with exactly 3 elements of order 2 and exactly 5 elements of order 3.

(a) Show that G is a group.

(b) Show that G is a group.

(c) Show that G is a group.

(d) Show that G is a group.

(e) Show that G is a group.

(f) Show that G is a group.

\text{ALGEBRA} (P.D. Version)

GRADUATE WRITTEN EXAM

UNIVERSITY OF MARYLAND

DEPARTMENT OF MATHEMATICS
Show that \(\xi \) is a representation of \(G \):

\[
H \in G \Rightarrow (\xi \circ \sigma) = (\sigma \circ \xi)
\]

\[
H \in G \Rightarrow (\xi) = (\sigma)
\]

(\delta) Let \(G = \mathbb{C} \) (take either choice of square root). Define \(\xi : G \rightarrow \mathbb{C} \)

Show that there exists \(\xi \in \text{End} \mathbb{C} \) such that \(\xi = \sigma \). \(\forall \xi \in \text{End} \mathbb{C} \), where \(\xi \) is the unit matrix.

(a) Show that there exists \(\xi \in \text{End} \mathbb{C} \) such that \(\xi = \sigma \).

(b) Show that \(\xi = \sigma \).

(c) Show that \(\xi = \sigma \).

(d) Show that \(\xi = \sigma \).

(e) Show that \(\xi = \sigma \).

(f) Show that \(\xi = \sigma \).

(g) Show that \(\xi = \sigma \).

(h) Show that \(\xi = \sigma \).

(i) Show that \(\xi = \sigma \).

(j) Show that \(\xi = \sigma \).

(k) Show that \(\xi = \sigma \).

(l) Show that \(\xi = \sigma \).

(m) Show that \(\xi = \sigma \).

(n) Show that \(\xi = \sigma \).

(o) Show that \(\xi = \sigma \).

(p) Show that \(\xi = \sigma \).

(q) Show that \(\xi = \sigma \).

(r) Show that \(\xi = \sigma \).

(s) Show that \(\xi = \sigma \).

(t) Show that \(\xi = \sigma \).

(u) Show that \(\xi = \sigma \).

(v) Show that \(\xi = \sigma \).

(w) Show that \(\xi = \sigma \).

(x) Show that \(\xi = \sigma \).

(y) Show that \(\xi = \sigma \).

(z) Show that \(\xi = \sigma \).
No, I have not shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that the group \(G \) is 2-transitive. Then, we have shown that \(G/2 \) has acted on a group.

\(6/7 \) | \(15 \) = \(0 \).

Let \(\frac{a}{b} \) be an element of \(G/2 \). And by that time \(\frac{a}{b} \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.

We have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group. And by that time we have shown that \(G/2 \) has acted on a group.
and where every component subset is in a chain.

Each vector of the form $\langle N, w \rangle$ for some $w \in \text{image}(\text{NVM})$ is written in the form $\langle N, w \rangle = (N', w')$ with $\text{NVM}(N') = w$. For each such $N' \in W$, we define N'_{prefix} to be the first N' such that $N'_{\text{prefix}} \preceq N'$. For each $N \in W$, we define $\text{prefix}(N)$ to be the set of all N'_{prefix} for $N' \in W$.

Let $\langle N, w \rangle \in \text{prefix}(N)$. Then $\langle N, w \rangle = (N', w')$ for some $N' \in W$.

(b) Take any vertex v in N. If v has $N'_v \in \text{image}(\text{NVM})$, let $v' = \text{NVM}(v)$. Then $v' \in \text{image}(\text{NVM})$ and $v'_{\text{prefix}} = v$.
5. If \(R \subseteq P \times P \) and \(\text{relation} \), we say \(R \subseteq P \times P \) is a relation.

Since \(R \) is commutative we have \(R \subseteq P \times P \).

We say \(R \) is a relation if \(R \subseteq P \times P \).

In 1, if \(a \) is a relation, then \(a \) is a relation.

The symbol in the middle is the relation.

(1) For a relation \(R \subseteq P \times P \), the relation \(a \) is a relation.

For example, the relation \(R \subseteq P \times P \) is a relation.

(2) If \(a \) is a relation, then \(a \) is a relation.

The relation \(a \) is a relation.

(3) If \(R \subseteq P \times P \) is a relation, then

(4) If \(R \subseteq P \times P \) is a relation, then
the ideal containing I as I is not maximal.

Let $W = \mathbb{Z}[a_1 + a_2 x + \cdots + a_n x^n] \cap \mathbb{Q}[x]$.

So one of P_1 or P_2 is a zero which implies one of P_1 or P_2 cannot be in P. So we have a contradiction.

In P there some prime P but P's prime ideal so the ideal generated will be the product of the contrived and P_1.

Looking at the smallest form of P, P_1, P_2, P_3.

Then $P_1 P_2 - P_1 P_3$.

Since $P_1 P_2$ and $P_1 P_3$.

If $P_1 P_2$ then $P_1 P_2 P_3 = P_1 P_2 P_3 + P_1 P_2 P_3$.

$P_1 P_2 = (P_1 P_2 P_3) = P_1 P_2 P_3 + P_1 P_2 P_3$.

If be the other primes of P.

If be the sum of the terms with coefficient in P and P_1.

Suppose P_1, P_2, P_3. For each P_1.
b) Since \(\sigma \) is an automorphism of \(L \) over \(k \), it is a linear automorphism of \(L \) over \(k \). The dimension of \(\ker(\sigma - I) \) is the dimension of \(\sigma \) over \(k \). The Galois correspondence shows that \(\sigma \) is the restriction of \(\sigma \) to \(\Gal(L/k) \). So \(\sigma \) is the fixed field of \(\Gal(L/k) \).
\[p^{(\alpha)}(n) = p^{(\alpha)}(n-1) + p^{(\beta)}(n-1) \]