11. Exercises 4 & 11, Section 14.1

12. Exercises 1 & 3, Section 14.2

13. Let \(f(x, y, z) = xyz \), let \(\mathbf{u} \) be the unit vector in the direction from \((1, 2, 3)\) to \((3, 1, 5)\). Find \(\frac{\partial f}{\partial u}(1, -1, 2) \).

14. Define \(S = \{(x, y, z) \mid xy = z\} \).

(a) Let \(p = (a, b, c) \) be a point on \(S \). Find the equation for the tangent plane \(T_p \) to \(S \) at \(p \).

(b) Show that the intersection \(S \cap T_p \) consists of two lines.

15. Let \(a, b \) be real numbers satisfying \(0 < a < b \). Define a map \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^3 \) by \(T(s, t) = (a \sin s, (b + a \cos s) \sin t, (b + a \cos s) \cos t) \).

Then the image \(\{T(s, t) \mid (s, t) \in \mathbb{R}^2\} \) is a surface in \(\mathbb{R}^3 \) called a torus.

(a) We can define a “height function” \(h(s, t) \) to be the \(z \)-coordinate of the torus. That is, \(h(s, t) = (b + a \cos s) \cos t \). Find the critical points \((s, t)\) of the height function. Show they map to exactly four points \(p \) under \(T \). Show that one such \(p \) is a maximum of \(h \), another is a minimum, and the remaining two are saddle points.

(b) Similarly define a function \(k(s, t) \) to be the \(x \)-coordinate of the torus. Find the critical points \((s, t)\) of this function. To what points \(q \) do these \((s, t)\) map under \(T \)? Which such \(q \) are maxima of \(k \)? Minima? Saddle points?