Calculus 140, section 2.4 One-Sided and Infinite Limits

notes prepared by Tim Pilachowski

Examples A–D: Consider the following functions. Why is it problematic to try to evaluate \(\lim_{x \to 1} f(x) \) for them?

A) \(f(x) = \sqrt{x - 1} \)
B) \(f(x) = \frac{|x - 1|}{x - 1} \)
C) \(f(x) = \frac{1}{x - 1} \)
D) \(f(x) = \ln(x - 1) \)

Definition 2.4: “Let \(f \) be a function defined at each point of some open interval \((c, a)\). A number \(L \) is the limit of \(f(x) \) as \(x \) approaches \(a \) from the left (or is the left-hand limit of \(f \) at \(a \)) if for every \(\varepsilon > 0 \) there is a number \(\delta > 0 \) such that

\[
\text{if } a - \delta < x < a, \text{ then } |f(x) - L| < \varepsilon.
\]

In this case we write \(\lim_{x \to a^-} f(x) = L \) and say that the left-hand limit of \(f \) at \(a \) exists.”

The notation \(\lim_{x \to a^-} f(x) \) is read “the limit of \(f(x) \) as \(x \) approaches \(a \) from the left”.

If we were to consider some open interval \((a, c)\) to the right of \(a \), we get the analogous right-hand limit of \(f \) at \(a \). If \(\lim_{x \to a^+} f(x) = L \) we say that the right-hand limit of \(f \) at \(a \) exists.”

The notation \(\lim_{x \to a^+} f(x) \) is read “the limit of \(f(x) \) as \(x \) approaches \(a \) from the right”.

How do these one-sided limits connect to the ordinary, or two-sided limits of section 2.2?

Theorem 2.5 (short version): If both one-sided limits exist and also \(\lim_{x \to a} f(x) = \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) \), then \(\lim_{x \to a} f(x) \) exists, and

\[
\lim_{x \to a} f(x) = \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x).
\]

Good news: All of the properties given in Lecture 2.3 (sum rule, constant multiple rule, etc.) apply to one-sided limits!

As always, you should read through the more detailed explanations in the text, and look over the text’s worked-out Examples.
Example A: Given \(f(x) = \sqrt{x-1} \), evaluate \(\lim_{x \to 1^-} f(x) \), \(\lim_{x \to 1^+} f(x) \) and \(\lim_{x \to 1} f(x) \).

Example B: Given \(f(x) = \frac{|x-1|}{x-1} \), evaluate \(\lim_{x \to 1^-} f(x) \), \(\lim_{x \to 1^+} f(x) \) and \(\lim_{x \to 1} f(x) \).
Example B extended: Given \(f(x) = \begin{cases} 2x - 1 & \text{for } x < 1 \\ 1 & \text{for } x > 1 \end{cases} \), evaluate \(\lim_{x \to 1^-} f(x) \), \(\lim_{x \to 1^+} f(x) \) and \(\lim_{x \to 1} f(x) \).

Example C: Given \(f(x) = \frac{1}{x - 1} \), evaluate \(\lim_{x \to 1^-} f(x) \), \(\lim_{x \to 1^+} f(x) \) and \(\lim_{x \to 1} f(x) \).
Definition 2.6 (short version): If \(\lim_{x \to a^-} f(x) = \infty \), or \(\lim_{x \to a^+} f(x) = -\infty \), then “the vertical line \(x = a \) is called a vertical asymptote of the graph of \(f \), and we say that we say that \(f \) has an infinite … limit at \(a \).”

Example C extended: Given \(f(x) = \frac{x-1}{x^2-1} \), find all vertical asymptotes.

Example D: Given \(f(x) = \ln(x-1) \), evaluate \(\lim_{x \to 1^-} f(x) \), \(\lim_{x \to 1^+} f(x) \) and \(\lim_{x \to 1} f(x) \).
The text considers the graph of \(f(x) = \sqrt[3]{x} \). While it has no vertical asymptotes, something interesting occurs when we consider the slope of the tangent at \(x = 0 \).

\[
\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \frac{x^{\frac{1}{3}} - 0}{x - 0} = \frac{1}{x^{\frac{2}{3}}} = \infty
\]

Definition 2.7: “Suppose \(f \) is continuous at \(a \). If \(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \infty \) or \(\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = -\infty \) then we say that the graph of \(f \) has a vertical tangent at \((a, f(a))\). In that case the vertical line \(x = a \) is called the line tangent to the graph of \(f \) at \(a \).”