1. Let

\[I = \int_0^2 \int_{x/2}^1 xe^{y^3} \, dy \, dx \]

Sketch the region of integration, reverse the order of integration and evaluate \(I \).

2. Find the surface area \(S \) of the portion of the surface \(z = xy \) which lies inside the cylinder \(x^2 + y^2 = 9 \).

3. Compute by triple integration the volume \(V \) of the region \(D \) that is bounded by the parabolic cylinder \(x = y^2 \) and the planes \(z = 0 \), \(y = 0 \) and \(x + z = 1 \).

4. Find the mass of the solid lying between the spheres \(x^2 + y^2 + z^2 = 1 \) and \(x^2 + y^2 + z^2 = 4 \) if the density at each point is proportional to the reciprocal of the distance from the center of the spheres. (Call the constant of proportionality \(k \).)

5. Compute \(\int \int_R x \, dA \) where \(R \) is the region bounded by \(xy = 1 \), \(xy = 2 \), \(x(1 - y) = 1 \) and \(x(1 - y) = 3 \) by making the change of variables \(x = u + v \), \(y = v/(u + v) \).